赞
踩
下面用数据 UCI Dermatology dataset演示XGBoost的多分类问题
首先要安装好XGBoost的C++版本和相应的Python模块,然后执行如下脚本,如果本地没有训练所需要的数据,runexp.sh负责从https://archive.ics.uci.edu/ml/datasets/Dermatology下载数据集,然后调用train.py
1.Run runexp.sh
./runexp.sh
runexp.sh的代码
- #!/bin/bash
- if [ -f dermatology.data ]
- then
- echo "use existing data to run multi class classification"
- else
- echo "getting data from uci, make sure you are connected to internet"
- wget https://archive.ics.uci.edu/ml/machine-learning-databases/dermatology/dermatology.data
- fi
- python train.py
train.py的代码
- #! /usr/bin/python
- import numpy as np
- import xgboost as xgb
- # label need to be 0 to num_class -1
- data = np.loadtxt('./dermatology.data', delimiter=',',converters={33: lambda x:int(x == '?'), 34: lambda x:int(x)-1 } )
- sz = data.shape
- train = data[:int(sz[0] * 0.7), :]
- test = data[int(sz[0] * 0.7):, :]
- train_X = train[:,0:33]
- train_Y = train[:, 34]
- test_X = test[:,0:33]
- test_Y = test[:, 34]
- xg_train = xgb.DMatrix( train_X, label=train_Y)
- xg_test = xgb.DMatrix(test_X, label=test_Y)
- # setup parameters for xgboost
- param = {}
- # use softmax multi-class classification
- param['objective'] = 'multi:softmax'
- # scale weight of positive examples
- param['eta'] = 0.1
- param['max_depth'] = 6
- param['silent'] = 1
- param['nthread'] = 4
- param['num_class'] = 6
- watchlist = [ (xg_train,'train'), (xg_test, 'test') ]
- num_round = 5
- bst = xgb.train(param, xg_train, num_round, watchlist );
- # get prediction
- pred = bst.predict( xg_test );
- print ('predicting, classification error=%f' % (sum( int(pred[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
- # do the same thing again, but output probabilities
- param['objective'] = 'multi:softprob'
- bst = xgb.train(param, xg_train, num_round, watchlist );
- # Note: this convention has been changed since xgboost-unity
- # get prediction, this is in 1D array, need reshape to (ndata, nclass)
- yprob = bst.predict( xg_test ).reshape( test_Y.shape[0], 6 )
- ylabel = np.argmax(yprob, axis=1)
- print ('predicting, classification error=%f' % (sum( int(ylabel[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。