赞
踩
表征单词的方式是首先建立一个较大的词汇表(例如10000),然后使用one-hot的方式对每个单词进行编码。例如单词Man,Woman,King,Queen,Apple,Orange分别出现在词汇表的第5391,9853,4914,7157,456,6257的位置,则它们分别用O5391,O9853,O4914,O7157,O456,O6257表示。
one-hot表征单词的方法最大的缺点就是每个单词都是独立的、正交的,无法知道不同单词之间的相似程度。在NLP中,我们更希望能掌握不同单词之间的相似程度。
使用特征表征(Featurized representation)的方法对每个单词进行编码。也就是使用一个特征向量表征单词,特征向量的每个元素都是对该单词某一特征的量化描述,量化范围可以是[-1,1]之间。特征表征的例子如下图所示:
特征向量的长度依情况而定,这里的特征向量长度设定为300。使用特征表征之后,词汇表中的每个单词都可以使用对应的300 x 1的向量来表示,该向量的每个元素表示该单词对应的某个特征值。每个单词用e+词汇表索引的方式标记,例如e5391,e9853,e4914,e7157,e456,e6257。
这种特征表征(featurized representation)的优点是根据特征向量能清晰知道不同单词之间的相似程度,这种单词“类别”化的方式,大大提高了有限词汇量的泛化能力。这种特征化单词的操作被称为Word Embeddings,即单词嵌入。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。