赞
踩
人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客
目录
图像分类问题是神经网络经常遇到的处理任务,需要将图像按给定的类别进行分类。
本篇通过手写数字识别这个典型的图像分类任务(0~9个数字一共是10个类别),来了解图像分类问题的特点,原理和方法。
我们首先尝试使用典型的全连接神经网络,再引入适合图像处理任务的卷积神经网络。
经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示:
Python源码 - 激活函数为sigmoid的多层网络参考代码:
- import paddle.nn.functional as F
- from paddle.nn import Linear
-
- # 定义多层全连接神经网络
- class MNIST(paddle.nn.Layer):
- def __init__(self):
- super(MNIST, self).__init__()
- # 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整
- self.fc1 = Linear(in_features=784, out_features=10)
- self.fc2 = Linear(in_features=10, out_features=10)
- # 定义一层全连接输出层,输出维度是1
- self.fc3 = Linear(in_features=10, out_features=1)
-
- # 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数
- def forward(self, inputs):
- # inputs = paddle.reshape(inputs, [inputs.shape[0], 784])
- outputs1 = self.fc1(inputs)
- outputs1 = F.sigmoid(outputs1)
- outputs2 = self.fc2(outputs1)
- outputs2 = F.sigmoid(outputs2)
- outputs_final = self.fc3(outputs2)
- return outputs_final
然而,全连接神经网络模型并不适合图像分类模型,图像分类任务需要考虑图像数据的空间性,以及如何分类(波士顿房价预测是回归任务,是回归到一个具体数字,手写数字识别实际上是进行分类判断),对于图像识别和分类任务,我们需要引入卷积神经网络,Softmax激活函数以及交叉熵损失函数,整个流程如下图:
图像识别需要考虑数据的空间分布,更适合使用卷积神经网络模型,模型中包含卷积层(convolution)和池化层(subsampling),以及最后一个全连接层(fully connected)
关于卷积神经网络,可以参考这一篇:
PyTorch学习系列教程:卷积神经网络【CNN】 - 知乎
关于卷积核和输入,输出通道,可以参考这一篇:
如何理解卷积神经网络中的通道(channel)_卷积通道数_叹久01的博客-CSDN博客
Python源码 - 卷积神经网络参考代码:
- # 定义 SimpleNet 网络结构
- import paddle
- from paddle.nn import Conv2D, MaxPool2D, Linear
- import paddle.nn.functional as F
- # 多层卷积神经网络实现
- class MNIST(paddle.nn.Layer):
- def __init__(self):
- super(MNIST, self).__init__()
-
- # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
- self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
- # 定义池化层,池化核的大小kernel_size为2,池化步长为2
- self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
- # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
- self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
- # 定义池化层,池化核的大小kernel_size为2,池化步长为2
- self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
- # 定义一层全连接层,输出维度是1
- self.fc = Linear(in_features=980, out_features=1)
-
- # 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
- # 卷积层激活函数使用Relu,全连接层不使用激活函数
- def forward(self, inputs):
- x = self.conv1(inputs)
- x = F.relu(x)
- x = self.max_pool1(x)
- x = self.conv2(x)
- x = F.relu(x)
- x = self.max_pool2(x)
- x = paddle.reshape(x, [x.shape[0], -1])
- x = self.fc(x)
- return x
为了进行分类判别,要通过引入Softmax函数到输出层,使得输出层的输出为不同类别概率的集合,并且所有概率之和为1,比如[0.1, 0.2, 0.7]
比如,一个三个标签的分类模型(三分类)使用的Softmax输出层,从中可见原始输出的三个数字3、1、-3,经过Softmax层后转变成加和为1的三个概率值0.88、0.12、0。
分类网络模型需要使用交叉熵损失函数不断训练更新模型参数,最终使得交叉熵趋于收敛,从而完成模型训练。
正确解标签对应的输出越大,交叉熵的值越接近0;当输出为1时,交叉熵误差为0。反之,如果正确解标签对应的输出越小,则交叉熵的值越大。
要想搞清楚交叉熵,推荐大家读一下这篇文章:损失函数:交叉熵详解 - 知乎
里面又牵涉到极大似然估计理论,推荐阅读这篇文章:极大似然估计思想的最简单解释_class_brick的博客-CSDN博客
学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如 图所示。
图3: 不同学习率算法效果示意图
在计算机视觉中,通常会对图像做一些随机的变化,产生相似但又不完全相同的样本。主要作用是扩大训练数据集,抑制过拟合,提升模型的泛化能力,常用的方法主要有以下几种:
下面是分别使用numpy 实现这些数据增强方法。
- import numpy as np
- import cv2
- from PIL import Image, ImageEnhance
- import random
-
- # 随机改变亮暗、对比度和颜色等
- def random_distort(img):
- # 随机改变亮度
- def random_brightness(img, lower=0.5, upper=1.5):
- e = np.random.uniform(lower, upper)
- return ImageEnhance.Brightness(img).enhance(e)
- # 随机改变对比度
- def random_contrast(img, lower=0.5, upper=1.5):
- e = np.random.uniform(lower, upper)
- return ImageEnhance.Contrast(img).enhance(e)
- # 随机改变颜色
- def random_color(img, lower=0.5, upper=1.5):
- e = np.random.uniform(lower, upper)
- return ImageEnhance.Color(img).enhance(e)
-
- ops = [random_brightness, random_contrast, random_color]
- np.random.shuffle(ops)
-
- img = Image.fromarray(img)
- img = ops[0](img)
- img = ops[1](img)
- img = ops[2](img)
- img = np.asarray(img)
-
- return img
-
- # 定义可视化函数,用于对比原图和图像增强的效果
- import matplotlib.pyplot as plt
- def visualize(srcimg, img_enhance):
- # 图像可视化
- plt.figure(num=2, figsize=(6,12))
- plt.subplot(1,2,1)
- plt.title('Src Image', color='#0000FF')
- plt.axis('off') # 不显示坐标轴
- plt.imshow(srcimg) # 显示原图片
-
- # 对原图做 随机改变亮暗、对比度和颜色等 数据增强
- srcimg_gtbox = records[0]['gt_bbox']
- srcimg_label = records[0]['gt_class']
-
- plt.subplot(1,2,2)
- plt.title('Enhance Image', color='#0000FF')
- plt.axis('off') # 不显示坐标轴
- plt.imshow(img_enhance)
-
-
- image_path = records[0]['im_file']
- print("read image from file {}".format(image_path))
- srcimg = Image.open(image_path)
- # 将PIL读取的图像转换成array类型
- srcimg = np.array(srcimg)
-
- # 对原图做 随机改变亮暗、对比度和颜色等 数据增强
- img_enhance = random_distort(srcimg)
- visualize(srcimg, img_enhance)
- # 随机填充
- def random_expand(img,
- gtboxes,
- max_ratio=4.,
- fill=None,
- keep_ratio=True,
- thresh=0.5):
- if random.random() > thresh:
- return img, gtboxes
-
- if max_ratio < 1.0:
- return img, gtboxes
-
- h, w, c = img.shape
- ratio_x = random.uniform(1, max_ratio)
- if keep_ratio:
- ratio_y = ratio_x
- else:
- ratio_y = random.uniform(1, max_ratio)
- oh = int(h * ratio_y)
- ow = int(w * ratio_x)
- off_x = random.randint(0, ow - w)
- off_y = random.randint(0, oh - h)
-
- out_img = np.zeros((oh, ow, c))
- if fill and len(fill) == c:
- for i in range(c):
- out_img[:, :, i] = fill[i] * 255.0
-
- out_img[off_y:off_y + h, off_x:off_x + w, :] = img
- gtboxes[:, 0] = ((gtboxes[:, 0] * w) + off_x) / float(ow)
- gtboxes[:, 1] = ((gtboxes[:, 1] * h) + off_y) / float(oh)
- gtboxes[:, 2] = gtboxes[:, 2] / ratio_x
- gtboxes[:, 3] = gtboxes[:, 3] / ratio_y
-
- return out_img.astype('uint8'), gtboxes
-
-
- # 对原图做 随机改变亮暗、对比度和颜色等 数据增强
- srcimg_gtbox = records[0]['gt_bbox']
- img_enhance, new_gtbox = random_expand(srcimg, srcimg_gtbox)
- visualize(srcimg, img_enhance)
随机裁剪之前需要先定义两个函数,multi_box_iou_xywh
和box_crop
这两个函数将被保存在box_utils.py文件中。
- import numpy as np
-
- def multi_box_iou_xywh(box1, box2):
- """
- In this case, box1 or box2 can contain multi boxes.
- Only two cases can be processed in this method:
- 1, box1 and box2 have the same shape, box1.shape == box2.shape
- 2, either box1 or box2 contains only one box, len(box1) == 1 or len(box2) == 1
- If the shape of box1 and box2 does not match, and both of them contain multi boxes, it will be wrong.
- """
- assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."
- assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."
-
-
- b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
- b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
- b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
- b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
-
- inter_x1 = np.maximum(b1_x1, b2_x1)
- inter_x2 = np.minimum(b1_x2, b2_x2)
- inter_y1 = np.maximum(b1_y1, b2_y1)
- inter_y2 = np.minimum(b1_y2, b2_y2)
- inter_w = inter_x2 - inter_x1
- inter_h = inter_y2 - inter_y1
- inter_w = np.clip(inter_w, a_min=0., a_max=None)
- inter_h = np.clip(inter_h, a_min=0., a_max=None)
-
- inter_area = inter_w * inter_h
- b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
- b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
-
- return inter_area / (b1_area + b2_area - inter_area)
-
- def box_crop(boxes, labels, crop, img_shape):
- x, y, w, h = map(float, crop)
- im_w, im_h = map(float, img_shape)
-
- boxes = boxes.copy()
- boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (
- boxes[:, 0] + boxes[:, 2] / 2) * im_w
- boxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (
- boxes[:, 1] + boxes[:, 3] / 2) * im_h
-
- crop_box = np.array([x, y, x + w, y + h])
- centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
- mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(
- axis=1)
-
- boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])
- boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])
- boxes[:, :2] -= crop_box[:2]
- boxes[:, 2:] -= crop_box[:2]
-
- mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))
- boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)
- labels = labels * mask.astype('float32')
- boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (
- boxes[:, 2] - boxes[:, 0]) / w
- boxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (
- boxes[:, 3] - boxes[:, 1]) / h
-
- return boxes, labels, mask.sum()
-
- # 随机裁剪
- def random_crop(img,
- boxes,
- labels,
- scales=[0.3, 1.0],
- max_ratio=2.0,
- constraints=None,
- max_trial=50):
- if len(boxes) == 0:
- return img, boxes
-
- if not constraints:
- constraints = [(0.1, 1.0), (0.3, 1.0), (0.5, 1.0), (0.7, 1.0),
- (0.9, 1.0), (0.0, 1.0)]
-
- img = Image.fromarray(img)
- w, h = img.size
- crops = [(0, 0, w, h)]
- for min_iou, max_iou in constraints:
- for _ in range(max_trial):
- scale = random.uniform(scales[0], scales[1])
- aspect_ratio = random.uniform(max(1 / max_ratio, scale * scale), \
- min(max_ratio, 1 / scale / scale))
- crop_h = int(h * scale / np.sqrt(aspect_ratio))
- crop_w = int(w * scale * np.sqrt(aspect_ratio))
- crop_x = random.randrange(w - crop_w)
- crop_y = random.randrange(h - crop_h)
- crop_box = np.array([[(crop_x + crop_w / 2.0) / w,
- (crop_y + crop_h / 2.0) / h,
- crop_w / float(w), crop_h / float(h)]])
-
- iou = multi_box_iou_xywh(crop_box, boxes)
- if min_iou <= iou.min() and max_iou >= iou.max():
- crops.append((crop_x, crop_y, crop_w, crop_h))
- break
-
- while crops:
- crop = crops.pop(np.random.randint(0, len(crops)))
- crop_boxes, crop_labels, box_num = box_crop(boxes, labels, crop, (w, h))
- if box_num < 1:
- continue
- img = img.crop((crop[0], crop[1], crop[0] + crop[2],
- crop[1] + crop[3])).resize(img.size, Image.LANCZOS)
- img = np.asarray(img)
- return img, crop_boxes, crop_labels
- img = np.asarray(img)
- return img, boxes, labels
-
-
- # 对原图做 随机改变亮暗、对比度和颜色等 数据增强
- srcimg_gtbox = records[0]['gt_bbox']
- srcimg_label = records[0]['gt_class']
-
- img_enhance, new_labels, mask = random_crop(srcimg, srcimg_gtbox, srcimg_label)
- visualize(srcimg, img_enhance)
-
- # 随机缩放
- def random_interp(img, size, interp=None):
- interp_method = [
- cv2.INTER_NEAREST,
- cv2.INTER_LINEAR,
- cv2.INTER_AREA,
- cv2.INTER_CUBIC,
- cv2.INTER_LANCZOS4,
- ]
- if not interp or interp not in interp_method:
- interp = interp_method[random.randint(0, len(interp_method) - 1)]
- h, w, _ = img.shape
- im_scale_x = size / float(w)
- im_scale_y = size / float(h)
- img = cv2.resize(
- img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
- return img
-
- # 对原图做 随机缩放
- img_enhance = random_interp(srcimg, 640)
- visualize(srcimg, img_enhance)
- # 随机翻转
- def random_flip(img, gtboxes, thresh=0.5):
- if random.random() > thresh:
- img = img[:, ::-1, :]
- gtboxes[:, 0] = 1.0 - gtboxes[:, 0]
- return img, gtboxes
-
-
- # 对原图做 随机改变亮暗、对比度和颜色等 数据增强
- img_enhance, box_enhance = random_flip(srcimg, srcimg_gtbox)
- visualize(srcimg, img_enhance)
- # 随机打乱真实框排列顺序
- def shuffle_gtbox(gtbox, gtlabel):
- gt = np.concatenate(
- [gtbox, gtlabel[:, np.newaxis]], axis=1)
- idx = np.arange(gt.shape[0])
- np.random.shuffle(idx)
- gt = gt[idx, :]
- return gt[:, :4], gt[:, 4]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。