当前位置:   article > 正文

一文读懂梯度下降法_梯度下降算法的实际应用

梯度下降算法的实际应用

机器学习 101:一文带你读懂梯度下降

梯度下降无疑是大多数机器学习(ML)算法的核心和灵魂。我绝对认为你应该花时间去理解它。因为对于初学者来说,这样做能够让你更好地理解大多数机器学习算法是如何工作的。另外,想要培养对复杂项目的直觉,理解基本的概念也是十分关键的。  

为了理解梯度下降的核心,让我们来看一个运行的例子。这项任务是这个领域的一项老任务——使用一些历史数据作为先验知识来预测房价。 

我们的目标是讨论梯度下降。所以我们让这个例子简单一点,以便我们可以专注于重要的部分。

 

  基本概念

假设你想爬一座很高的山,你的目标是最快到达山顶,可你环顾四周后,你意识到你有不止一条路可以走,既然你在山脚,但似乎所有选择都能让你离山顶更近。  

如果你想以最快的方式到达顶峰,所以你要怎么做呢?你怎样才能只迈出一步,而能够离山顶最近?  

到目前为止,我们还不清楚如何迈出这一步!而这就是梯度的用武之地。  

让我们一步步来看看它是如何工作的。

用更简单的话来说,导数是一个函数在某一点的变化率或斜率。 

以f(x)=x²函数为例。f(x)的导数就是另一个函数f'(x)在一个定点x的值,f'(x)就是f(x)的斜率函数。在这种情况下,当x=2时,f(x) = x²的斜率是2 x,也就是2*2=4。  

 

机器学习 101:一文带你读懂梯度下降

f(x) = x²在不同点的斜率。

 

简单地说,导数指向上升最陡的方向。恰巧的是,梯度和导数基本上是一样的。除了一点,即梯度是一个向量值函数,向量里包含着偏导数。换句话说,梯度是一个向量,它的每一个分量都是对一个特定变量的偏导数。  

以函数f(x,y)=2x²+y²为另一个例子。  

这里的f(x,y)是一个多变量函数。它的梯度是一个向量,其中包含了f(x,y)的偏导数,第一个是关于x的偏导数,第二个是关于y的偏导数。

如果我们计算f(x,y)的偏导数。

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/104165
推荐阅读
相关标签
  

闽ICP备14008679号