- import torch
- import numpy
- import random
- from torch.autograd import Variable
- import torch.nn.functional as F
- import matplotlib.pyplot as plt
-
- x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1)
- y = x.pow(2)+0.2*torch.rand(x.size())
- x,y = Variable(x),Variable(y)
- plt.ion()
- class Net(torch.nn.Module):
- def __init__(self,n_feature,n_hidden,n_output):
- super(Net,self).__init__()
- #两层感知机
- self.hidden = torch.nn.Linear(n_feature,n_hidden)
- self.predict = torch.nn.Linear(n_hidden,n_output)
-
- def forward(self,x):
- x = F.relu(self.hidden(x))
- x = self.predict(x)
- return x
-
- net = Net(1,8,1) #输入节点1个,隐层节点8个,输出节点1个
- optimizer = torch.optim.SGD(net.parameters(),lr = 0.2)
- loss_func = torch.nn.MSELoss()
-
- for t in range(200):
- prediction = net(x)
- loss = loss_func(prediction,y)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- if t%5==0:
- plt.cla()
- plt.scatter(x.data.numpy(),y.data.numpy())
- plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
- plt.pause(0.1)
-
- plt.ioff()
- plt.show()