赞
踩
数据的分类和处理是以后更要加强学习的部分,今天先把代码贴在这了,算是立一个flag
- # -*- coding:utf-8 -*-
-
- import pandas as pd
- import numpy as np
- from sklearn.decomposition import PCA
- from sklearn.feature_selection import SelectKBest, SelectPercentile, chi2
- from sklearn.linear_model import LogisticRegressionCV
- from sklearn import metrics
- from sklearn.model_selection import train_test_split
- from sklearn.pipeline import Pipeline
- from sklearn.preprocessing import PolynomialFeatures
- from sklearn.manifold import TSNE
- import matplotlib as mpl
- import matplotlib.pyplot as plt
- import matplotlib.patches as mpatches
-
-
- def extend(a, b):
- return 1.05*a-0.05*b, 1.05*b-0.05*a
-
-
- if __name__ == '__main__':
- stype = 'chi2'
- pd.set_option('display.width', 200)
- data = pd.read_csv('iris.data', header=None)
- # columns = np.array(['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'type'])
- columns = np.array(['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度', '类型'])
- data.rename(columns=dict(list(zip(np.arange(5), columns))), inplace=True)
- data['类型'] = pd.Categorical(data['类型']).codes
- print(data.head(5))
- x = data[columns[:-1]]
- y = data[columns[-1]]
-
- if stype == 'pca':
- pca = PCA(n_components=2, whiten=True, random_state=0)
- x = pca.fit_transform(x)
- print('各方向方差:', pca.explained_variance_)
- print('方差所占比例:', pca.explained_variance_ratio_)
- x1_label, x2_label = '组分1', '组分2'
- title = '鸢尾花数据PCA降维'
- else:
- fs = SelectKBest(chi2, k=2)
- # fs = SelectPercentile(chi2, percentile=60)
- fs.fit(x, y)
- idx = fs.get_support(indices=True)
- print('fs.get_support() = ', idx)
- x = x[columns[idx]]
- x = x.values # 为下面使用方便,DataFrame转换成ndarray
- x1_label, x2_label = columns[idx]
- title = '鸢尾花数据特征选择'
- print(x[:5])
- cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
- cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
- mpl.rcParams['font.sans-serif'] = 'SimHei'
- mpl.rcParams['axes.unicode_minus'] = False
- plt.figure(facecolor='w')
- plt.scatter(x[:, 0], x[:, 1], s=30, c=y, marker='o', cmap=cm_dark)
- plt.grid(b=True, ls=':')
- plt.xlabel(x1_label, fontsize=14)
- plt.ylabel(x2_label, fontsize=14)
- plt.title(title, fontsize=18)
- # plt.savefig('1.png')
- plt.show()
-
- x, x_test, y, y_test = train_test_split(x, y, train_size=0.7)
- model = Pipeline([
- ('poly', PolynomialFeatures(degree=2, include_bias=True)),
- ('lr', LogisticRegressionCV(Cs=np.logspace(-3, 4, 8), cv=5, fit_intercept=False))
- ])
- model.fit(x, y)
- print('最优参数:', model.get_params('lr')['lr'].C_)
- y_hat = model.predict(x)
- print('训练集精确度:', metrics.accuracy_score(y, y_hat))
- y_test_hat = model.predict(x_test)
- print('测试集精确度:', metrics.accuracy_score(y_test, y_test_hat))
-
- N, M = 500, 500 # 横纵各采样多少个值
- x1_min, x1_max = extend(x[:, 0].min(), x[:, 0].max()) # 第0列的范围
- x2_min, x2_max = extend(x[:, 1].min(), x[:, 1].max()) # 第1列的范围
- t1 = np.linspace(x1_min, x1_max, N)
- t2 = np.linspace(x2_min, x2_max, M)
- x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点
- x_show = np.stack((x1.flat, x2.flat), axis=1) # 测试点
- y_hat = model.predict(x_show) # 预测值
- y_hat = y_hat.reshape(x1.shape) # 使之与输入的形状相同
- plt.figure(facecolor='w')
- plt.pcolormesh(x1, x2, y_hat, cmap=cm_light) # 预测值的显示
- plt.scatter(x[:, 0], x[:, 1], s=30, c=y, edgecolors='k', cmap=cm_dark) # 样本的显示
- plt.xlabel(x1_label, fontsize=14)
- plt.ylabel(x2_label, fontsize=14)
- plt.xlim(x1_min, x1_max)
- plt.ylim(x2_min, x2_max)
- plt.grid(b=True, ls=':')
- # 画各种图
- # a = mpl.patches.Wedge(((x1_min+x1_max)/2, (x2_min+x2_max)/2), 1.5, 0, 360, width=0.5, alpha=0.5, color='r')
- # plt.gca().add_patch(a)
- patchs = [mpatches.Patch(color='#77E0A0', label='Iris-setosa'),
- mpatches.Patch(color='#FF8080', label='Iris-versicolor'),
- mpatches.Patch(color='#A0A0FF', label='Iris-virginica')]
- plt.legend(handles=patchs, fancybox=True, framealpha=0.8, loc='lower right')
- plt.title('鸢尾花Logistic回归分类效果', fontsize=17)
- plt.show()
iris.data文本内容:
5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa 5.0,3.6,1.4,0.2,Iris-setosa 5.4,3.9,1.7,0.4,Iris-setosa 4.6,3.4,1.4,0.3,Iris-setosa 5.0,3.4,1.5,0.2,Iris-setosa 4.4,2.9,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 5.4,3.7,1.5,0.2,Iris-setosa 4.8,3.4,1.6,0.2,Iris-setosa 4.8,3.0,1.4,0.1,Iris-setosa 4.3,3.0,1.1,0.1,Iris-setosa 5.8,4.0,1.2,0.2,Iris-setosa 5.7,4.4,1.5,0.4,Iris-setosa 5.4,3.9,1.3,0.4,Iris-setosa 5.1,3.5,1.4,0.3,Iris-setosa 5.7,3.8,1.7,0.3,Iris-setosa 5.1,3.8,1.5,0.3,Iris-setosa 5.4,3.4,1.7,0.2,Iris-setosa 5.1,3.7,1.5,0.4,Iris-setosa 4.6,3.6,1.0,0.2,Iris-setosa 5.1,3.3,1.7,0.5,Iris-setosa 4.8,3.4,1.9,0.2,Iris-setosa 5.0,3.0,1.6,0.2,Iris-setosa 5.0,3.4,1.6,0.4,Iris-setosa 5.2,3.5,1.5,0.2,Iris-setosa 5.2,3.4,1.4,0.2,Iris-setosa 4.7,3.2,1.6,0.2,Iris-setosa 4.8,3.1,1.6,0.2,Iris-setosa 5.4,3.4,1.5,0.4,Iris-setosa 5.2,4.1,1.5,0.1,Iris-setosa 5.5,4.2,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 5.0,3.2,1.2,0.2,Iris-setosa 5.5,3.5,1.3,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 4.4,3.0,1.3,0.2,Iris-setosa 5.1,3.4,1.5,0.2,Iris-setosa 5.0,3.5,1.3,0.3,Iris-setosa 4.5,2.3,1.3,0.3,Iris-setosa 4.4,3.2,1.3,0.2,Iris-setosa 5.0,3.5,1.6,0.6,Iris-setosa 5.1,3.8,1.9,0.4,Iris-setosa 4.8,3.0,1.4,0.3,Iris-setosa 5.1,3.8,1.6,0.2,Iris-setosa 4.6,3.2,1.4,0.2,Iris-setosa 5.3,3.7,1.5,0.2,Iris-setosa 5.0,3.3,1.4,0.2,Iris-setosa 7.0,3.2,4.7,1.4,Iris-versicolor 6.4,3.2,4.5,1.5,Iris-versicolor 6.9,3.1,4.9,1.5,Iris-versicolor 5.5,2.3,4.0,1.3,Iris-versicolor 6.5,2.8,4.6,1.5,Iris-versicolor 5.7,2.8,4.5,1.3,Iris-versicolor 6.3,3.3,4.7,1.6,Iris-versicolor 4.9,2.4,3.3,1.0,Iris-versicolor 6.6,2.9,4.6,1.3,Iris-versicolor 5.2,2.7,3.9,1.4,Iris-versicolor 5.0,2.0,3.5,1.0,Iris-versicolor 5.9,3.0,4.2,1.5,Iris-versicolor 6.0,2.2,4.0,1.0,Iris-versicolor 6.1,2.9,4.7,1.4,Iris-versicolor 5.6,2.9,3.6,1.3,Iris-versicolor 6.7,3.1,4.4,1.4,Iris-versicolor 5.6,3.0,4.5,1.5,Iris-versicolor 5.8,2.7,4.1,1.0,Iris-versicolor 6.2,2.2,4.5,1.5,Iris-versicolor 5.6,2.5,3.9,1.1,Iris-versicolor 5.9,3.2,4.8,1.8,Iris-versicolor 6.1,2.8,4.0,1.3,Iris-versicolor 6.3,2.5,4.9,1.5,Iris-versicolor 6.1,2.8,4.7,1.2,Iris-versicolor 6.4,2.9,4.3,1.3,Iris-versicolor 6.6,3.0,4.4,1.4,Iris-versicolor 6.8,2.8,4.8,1.4,Iris-versicolor 6.7,3.0,5.0,1.7,Iris-versicolor 6.0,2.9,4.5,1.5,Iris-versicolor 5.7,2.6,3.5,1.0,Iris-versicolor 5.5,2.4,3.8,1.1,Iris-versicolor 5.5,2.4,3.7,1.0,Iris-versicolor 5.8,2.7,3.9,1.2,Iris-versicolor 6.0,2.7,5.1,1.6,Iris-versicolor 5.4,3.0,4.5,1.5,Iris-versicolor 6.0,3.4,4.5,1.6,Iris-versicolor 6.7,3.1,4.7,1.5,Iris-versicolor 6.3,2.3,4.4,1.3,Iris-versicolor 5.6,3.0,4.1,1.3,Iris-versicolor 5.5,2.5,4.0,1.3,Iris-versicolor 5.5,2.6,4.4,1.2,Iris-versicolor 6.1,3.0,4.6,1.4,Iris-versicolor 5.8,2.6,4.0,1.2,Iris-versicolor 5.0,2.3,3.3,1.0,Iris-versicolor 5.6,2.7,4.2,1.3,Iris-versicolor 5.7,3.0,4.2,1.2,Iris-versicolor 5.7,2.9,4.2,1.3,Iris-versicolor 6.2,2.9,4.3,1.3,Iris-versicolor 5.1,2.5,3.0,1.1,Iris-versicolor 5.7,2.8,4.1,1.3,Iris-versicolor 6.3,3.3,6.0,2.5,Iris-virginica 5.8,2.7,5.1,1.9,Iris-virginica 7.1,3.0,5.9,2.1,Iris-virginica 6.3,2.9,5.6,1.8,Iris-virginica 6.5,3.0,5.8,2.2,Iris-virginica 7.6,3.0,6.6,2.1,Iris-virginica 4.9,2.5,4.5,1.7,Iris-virginica 7.3,2.9,6.3,1.8,Iris-virginica 6.7,2.5,5.8,1.8,Iris-virginica 7.2,3.6,6.1,2.5,Iris-virginica 6.5,3.2,5.1,2.0,Iris-virginica 6.4,2.7,5.3,1.9,Iris-virginica 6.8,3.0,5.5,2.1,Iris-virginica 5.7,2.5,5.0,2.0,Iris-virginica 5.8,2.8,5.1,2.4,Iris-virginica 6.4,3.2,5.3,2.3,Iris-virginica 6.5,3.0,5.5,1.8,Iris-virginica 7.7,3.8,6.7,2.2,Iris-virginica 7.7,2.6,6.9,2.3,Iris-virginica 6.0,2.2,5.0,1.5,Iris-virginica 6.9,3.2,5.7,2.3,Iris-virginica 5.6,2.8,4.9,2.0,Iris-virginica 7.7,2.8,6.7,2.0,Iris-virginica 6.3,2.7,4.9,1.8,Iris-virginica 6.7,3.3,5.7,2.1,Iris-virginica 7.2,3.2,6.0,1.8,Iris-virginica 6.2,2.8,4.8,1.8,Iris-virginica 6.1,3.0,4.9,1.8,Iris-virginica 6.4,2.8,5.6,2.1,Iris-virginica 7.2,3.0,5.8,1.6,Iris-virginica 7.4,2.8,6.1,1.9,Iris-virginica 7.9,3.8,6.4,2.0,Iris-virginica 6.4,2.8,5.6,2.2,Iris-virginica 6.3,2.8,5.1,1.5,Iris-virginica 6.1,2.6,5.6,1.4,Iris-virginica 7.7,3.0,6.1,2.3,Iris-virginica 6.3,3.4,5.6,2.4,Iris-virginica 6.4,3.1,5.5,1.8,Iris-virginica 6.0,3.0,4.8,1.8,Iris-virginica 6.9,3.1,5.4,2.1,Iris-virginica 6.7,3.1,5.6,2.4,Iris-virginica 6.9,3.1,5.1,2.3,Iris-virginica 5.8,2.7,5.1,1.9,Iris-virginica 6.8,3.2,5.9,2.3,Iris-virginica 6.7,3.3,5.7,2.5,Iris-virginica 6.7,3.0,5.2,2.3,Iris-virginica 6.3,2.5,5.0,1.9,Iris-virginica 6.5,3.0,5.2,2.0,Iris-virginica 6.2,3.4,5.4,2.3,Iris-virginica 5.9,3.0,5.1,1.8,Iris-virginica
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。