赞
踩
tensorflow中ckpt模型转成pb模型的代码:参考链接https://blog.csdn.net/dulingtingzi/article/details/90790282
但是为了使大家更容易明白,因为有些变量需要统一,这里针对下面的使用pb模型进行预估的代码,粘贴一下ckpt转pb模型:
- import tensorflow as tf
- import os
- from tensorflow.contrib.layers import flatten
- from tensorflow.python.framework import graph_util
- import tensorflow.contrib.slim as slim
- import numpy as np
-
- growth_rate = 6
- depth = 50
- compression = 0.5
- weight_decay = 0.0001
- nb_blocks = int((depth - 4) / 6)
-
- def dense_net(img_input, num_classes, nb_blocks, growth_rate, weight_decay, compression, flag):
- ##自定义densenet代码
- return densenet(growth_rate,img_input,num_classes,weight_decay,nb_blocks,compression,flag)
-
- def set_config():#设置GPU使用率# 控制使用率
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- # 假如有16GB的显存并使用其中的8GB:
- gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3)
- config = tf.ConfigProto(gpu_options=gpu_options)
- # session = tf.Session(config=config)
- return config
- #下面是你自定义的模型
- num_classes=2
- #is_training = tf.placeholder(tf.bool, name='placeholder_is_training')
- is_training = tf.constant(False, dtype=tf.bool)#下面的名字要和你一开始训练模型的时候是一致的
- inputs = tf.placeholder(tf.float32, shape=[None,30, 280, 3], name='placeholder_x')
- labels = tf.placeholder(tf.float32, shape=[None,num_classes], name='placeholder_y')
- pred=dense_net(inputs, num_classes,nb_blocks, growth_rate,weight_decay,compression,is_training)
-
- model_path="./version1/checkpoint/2_class.ckpt-1"#设置model的路径,因新版tensorflow会生成三个文件,只需写到数字前
- cfg=set_config()
-
- from tensorflow.python.saved_model import signature_constants, signature_def_utils, tag_constants, utils
- save_path = './version1/model_pb/test'
- with tf.Session(config=cfg) as sess:
- saver = tf.train.Saver()
- saver.restore(sess, model_path)
- print('ckpt loaded')
- #注意下面的inputs和outputs的名字要和后面的pb模型做预估保持一致
- model_signature = signature_def_utils.build_signature_def(inputs={"input": utils.build_tensor_info(inputs)},outputs={"pred": utils.build_tensor_info(pred)},method_name=signature_constants.PREDICT_METHOD_NAME)
- builder = tf.saved_model.builder.SavedModelBuilder(save_path)
- legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
- builder.add_meta_graph_and_variables(sess, [tag_constants.SERVING],clear_devices=True,signature_def_map={signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:model_signature},legacy_init_op=legacy_init_op)
- builder.save()
- print('saved_model saved')
tensorflow使用pb模型做预估的代码:
- import os
- import math
- import cv2
- import numpy as np
- import tensorflow as tf
- from tensorflow.python.saved_model import signature_constants, signature_def_utils, tag_constants, utils
- import matplotlib.pyplot as plt
- from time import time
-
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
-
- def preprocessing_crop_batch(images, height=30, width=280,depth=3):#按照batch去处理图像
- bs = len(images)
- GAUGE = height
- img_canvas = np.zeros([bs, height, width, depth], dtype=np.float32)
- #img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- for i,img in enumerate(images):
- #####预处理代码块
- return img_canvas
-
- sess = tf.Session()
- m = tf.saved_model.loader.load(sess, tags=[tag_constants.SERVING], export_dir='./version1/model_pb/test/')
- graph = tf.get_default_graph()
- signature = m.signature_def
- signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
- input_tensor_name0 = signature[signature_key].inputs['input'].name#与之前转pb的时候的输入输出名字保持一致
- output_tensor_name = signature[signature_key].outputs['pred'].name
- x0 = tf.get_default_graph().get_tensor_by_name(input_tensor_name0)
- y0 = tf.get_default_graph().get_tensor_by_name(output_tensor_name)
-
- img_path = './images'
- imgs = os.listdir(img_path)
- imgs = list(map(lambda x : os.path.join(img_path, x), imgs))
-
- bs = 8
- img_batch = []
- for i in range(bs):
- img_batch.append(cv2.imread(imgs[i]))
-
- t0 = time()
- img_preprocess= preprocessing_crop_batch(img_batch)
- ans = sess.run(y0, {x0 : img_preprocess})
- ans = np.argmax(ans, axis=1)
- #ans = list(map(lambda x : x.decode(), ans))
- t1 = time()
-
- #plt.imshow(img[:,:,::-1])
- print(ans)
- print('seconds per frame %.2f ms' % ((t1-t0) * 1000 / bs))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。