赞
踩
train.py是训练YOLOV5使用的代码,后边根据函数调用展开。首先是主函数,显示有parse_opt()函数获得参数,然后把参数传给main函数。
-
- if __name__ == '__main__':
- opt = parse_opt() # 获得参数
- main(opt) # 把参数传给main函数完成后续操作
- def parse_opt(known=False):
- parser = argparse.ArgumentParser()
- # 加载预训练权重
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
- # 加载cfg配置文件(网络结构)
- parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
- # 加载数据集
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
- # 配置超参数
- parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
- # epochs 训练轮次
- parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
- # batch-size 训练批次,默认16
- parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
- # 设置图片大小
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
- # 是否采用矩形训练,默认False
- parser.add_argument('--rect', action='store_true', help='rectangular training')
- # 是否接着上次的训练结构继续训练
- parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
- # 不保存训练结果
- parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
- # noval 最后进行测试, 设置了之后就是训练结束都测试一下, 不设置每轮都计算mAP, 建议不设置#
- parser.add_argument('--noval', action='store_true', help='only validate final epoch')
- # 不自动调整anchor,默认为false(yolov5会根据数据集自动计算anchor,这是特色之一)
- parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
- parser.add_argument('--noplots', action='store_true', help='save no plot files')
- # 遗传算法调参
- parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
- # 谷歌优盘(一般用不到)
- parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
- # cache 是否提前缓存图片到内存,以加快训练速度,默认False
- parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
- # mage-weights 使用图片采样策略,默认不使用
- parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
- # gpu设备选择,
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- # 多尺度训练
- parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
- # single-cls 数据集是否多类/默认True
- parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
- # # optimizer 优化器选择 / 提供了三种优化器
- parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
- # sync-bn:是否使用跨卡同步BN,在DDP模式使用
- parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
- # 使用的线程数量(谨慎选择,适度的workers有助于提升训练速度,workers过大反而会导致变慢)
- parser.add_argument('--workers', type=int, default=12, help='max dataloader workers (per RANK in DDP mode)')
- # 保存路径 / 默认保存路径 ./runs/ train
- parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
- # 实验名称
- parser.add_argument('--name', default='exp', help='save to project/name')
- # 项目位置是否存在 / 默认是都不存在
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--quad', action='store_true', help='quad dataloader')
- # 余弦学习率
- parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
- # 标签平滑,默认不使用
- parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
- # 100次不更新就停止训练
- parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
- # --freeze冻结训练 可以设置 default = [0] 数据量大的情况下,建议不设置这个参数
- parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
- # 多少个epoch保存一下checkpoint
- parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
- # 随机数种子
- parser.add_argument('--seed', type=int, default=0, help='Global training seed')
- # --local_rank 进程编号 / 多卡使用
- parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
-
- # Logger arguments
- # # Weights & Biases arguments,类似于tensorboard的可视化工具
- parser.add_argument('--entity', default=None, help='Entity')
- parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
- parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
- parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
-
- return parser.parse_known_args()[0] if known else parser.parse_args()
- # Checks
- if RANK in {-1, 0}:
- # 输出所有训练参数
- print_args(vars(opt))
- # 检查代码版本是否更新
- check_git_status()
- # 检查所需要的包是否都安装了
- check_requirements(ROOT / 'requirements.txt')
- # Resume (from specified or most recent last.pt) 断点训练
- if opt.resume and not check_comet_resume(opt) and not opt.evolve:
- # isinstance()是否是已经知道的类型
- # 如果resume是True,则通过get_lastest_run()函数找到runs为文件夹中最近的权重文件last.pt
- last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
- opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
- opt_data = opt.data # original dataset
- # 把opt的参数替换为last.pt中opt的参数
- if opt_yaml.is_file():
- with open(opt_yaml, errors='ignore') as f:
- d = yaml.safe_load(f)
- else:
- d = torch.load(last, map_location='cpu')['opt']
- opt = argparse.Namespace(**d) # replace
- opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
- if is_url(opt_data):
- opt.data = check_file(opt_data) # avoid HUB resume auth timeout
- # 不使用断点训练
- else:
- # 加载参数
- opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
- check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
- assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
- if opt.evolve:
- if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
- opt.project = str(ROOT / 'runs/evolve')
- opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
- if opt.name == 'cfg':
- opt.name = Path(opt.cfg).stem # use model.yaml as name
- # 保存相关信息到文件中
- opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
2.3 分布式训练
- # DDP mode
- # 选择device
- device = select_device(opt.device, batch_size=opt.batch_size)
- if LOCAL_RANK != -1:
- msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
- assert not opt.image_weights, f'--image-weights {msg}'
- assert not opt.evolve, f'--evolve {msg}'
- assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
- assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
- assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
- # 根据编号选择设备
- #使用torch.cuda.set_device()可以更方便地将模型和数据加载到对应GPU上, 直接定义模型之前加入一行代码即可
- # torch.cuda.set_device(gpu_id) #单卡
- # torch.cuda.set_device('cuda:'+str(gpu_ids))
- #可指定多卡
- torch.cuda.set_device(LOCAL_RANK)
- device = torch.device('cuda', LOCAL_RANK)
- # 初始化多进程
- dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo',
- timeout=timedelta(seconds=10800))
解析了从opt传入的参数,创建了训练结果的保存路径,对绘图的参数进行了配置。
- ##################### 基本信息配置 ##################################
- # 解析opt传入的参数
- save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
- Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
- opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
- callbacks.run('on_pretrain_routine_start')
-
- # Directories
- w = save_dir / 'weights' # weights dir
- # 创建保存训练结果的文件夹
- (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
- # 保存训练结果的目录 ,如runs/train/exp1/weights/last.pt
- last, best = w / 'last.pt', w / 'best.pt'
-
- # Hyperparameters
- if isinstance(hyp, str):
- with open(hyp, errors='ignore') as f:
- hyp = yaml.safe_load(f) # load hyps dict
- # 打印超参数,彩色字体
- LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
- opt.hyp = hyp.copy() # for saving hyps to checkpoints
-
- # Save run settings
- if not evolve:
- yaml_save(save_dir / 'hyp.yaml', hyp)
- yaml_save(save_dir / 'opt.yaml', vars(opt))
-
- # Loggers
- data_dict = None
- if RANK in {-1, 0}:
- loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
-
- # Register actions
- for k in methods(loggers):
- callbacks.register_action(k, callback=getattr(loggers, k))
-
- # Process custom dataset artifact link
- data_dict = loggers.remote_dataset
- if resume: # If resuming runs from remote artifact
- weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
-
- # Config
- plots = not evolve and not opt.noplots # create plots
- cuda = device.type != 'cpu'
- # 随机种子
- init_seeds(opt.seed + 1 + RANK, deterministic=True)
- # 存在子进程-分布式训练
- with torch_distributed_zero_first(LOCAL_RANK):
- data_dict = data_dict or check_dataset(data) # check if None
- # 获取训练集和验证集的路径
- train_path, val_path = data_dict['train'], data_dict['val']
- # 设置类别,判断是否为蛋类
- nc = 1 if single_cls else int(data_dict['nc']) # number of classes
- # 类别对应的名称
- names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
- # 判断是否是coco数据集
- is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
- # Model
- # 检查文件后缀是否是.pt
- check_suffix(weights, '.pt') # check weights
- pretrained = weights.endswith('.pt')
- if pretrained:
- # torch_distributed_zero_first(RANK): 用于同步不同进程对数据读取的上下文管理器
- with torch_distributed_zero_first(LOCAL_RANK):
- # 如果不存在就从网站上下载
- weights = attempt_download(weights) # download if not found locally
- # 加载预训练模型及参数
- ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
- """
- 两种加载模型的方式: opt.cfg / ckpt['model'].yaml
- 使用resume-断点训练: 选择ckpt['model']yaml创建模型, 且不加载anchor
- 使用断点训练时,保存的模型会保存anchor,所以不需要加载
- """
- model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
- # 筛选字典中断电键值对,把exclude删除
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
- csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
- model.load_state_dict(csd, strict=False) # load
- LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
- else:
- # 不使用预训练权重
- model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- amp = check_amp(model) # check AMP
- # Freeze 冻结网络的训练层
- freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
- for k, v in model.named_parameters():
- v.requires_grad = True # train all layers
- # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
- if any(x in k for x in freeze):
- LOGGER.info(f'freezing {k}')
- # 冻结的训练层梯度不更新
- v.requires_grad = False
- # Image size
- gs = max(int(model.stride.max()), 32) # grid size (max stride)
- # 检查图片大小
- imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
-
- # Batch size
- if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
- batch_size = check_train_batch_size(model, imgsz, amp)
- loggers.on_params_update({'batch_size': batch_size})
- """
- yolov5这里并不是根据batch size的大小去更新梯度,而是设置了一个固定的值
- nbs = 64
- batchsize = 16
- accumulate = 64/16=4
- 梯度累计accumlate次之后更新一次模型,相当于使用更大的batch_size
- """
- # Optimizer
- nbs = 64 # nominal batch size
- accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
- # 权重衰减参数
- hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
- optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
- # Scheduler
- # 是否使用余弦学习率调整方式
- if opt.cos_lr:
- lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
- else:
- lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
-
- # EMA 对模型的参数做平均,给予近期数据更高权重的平均方法
- ema = ModelEMA(model) if RANK in {-1, 0} else None
-
- # Resume
- best_fitness, start_epoch = 0.0, 0
- if pretrained:
- if resume:
- best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
- del ckpt, csd
-
- # DP mode 单机多卡
- if cuda and RANK == -1 and torch.cuda.device_count() > 1:
- LOGGER.warning(
- 'WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
- 'See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started.'
- )
- model = torch.nn.DataParallel(model)
-
- # SyncBatchNorm 多卡归一化
- if opt.sync_bn and cuda and RANK != -1:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
- LOGGER.info('Using SyncBatchNorm()')
- # Trainloader 训练集数据加载
- train_loader, dataset = create_dataloader(train_path,
- imgsz,
- batch_size // WORLD_SIZE,
- gs,
- single_cls,
- hyp=hyp,
- augment=True,
- cache=None if opt.cache == 'val' else opt.cache,
- rect=opt.rect,
- rank=LOCAL_RANK,
- workers=workers,
- image_weights=opt.image_weights,
- quad=opt.quad,
- prefix=colorstr('train: '),
- shuffle=True,
- seed=opt.seed)
- # mlc 标签编号最大值
- labels = np.concatenate(dataset.labels, 0)
- mlc = int(labels[:, 0].max()) # max label class
- # 判断编号是否正确
- assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
-
- # Process 0
- # 验证集数据加载
- if RANK in {-1, 0}:
- val_loader = create_dataloader(val_path,
- imgsz,
- batch_size // WORLD_SIZE * 2,
- gs,
- single_cls,
- hyp=hyp,
- cache=None if noval else opt.cache,
- rect=True,
- rank=-1,
- workers=workers * 2,
- pad=0.5,
- prefix=colorstr('val: '))[0]
-
- if not resume: # 不使用断点训练
- if not opt.noautoanchor:
- # dataset是在上边创建train_loader时生成的
- # hyp['anchor_t']是从配置文件hpy.scratch.yaml读取的超参数 anchor_t:4.0
- # 当配置文件中的anchor计算bpr(best possible recall)小于0.98时才会重新计算anchor
- # best possible recall最大值1,如果bpr小于0.98,程序会根据数据集的label自动学习anchor的尺寸
- check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
- # 半精度
- model.half().float() # pre-reduce anchor precision
-
- callbacks.run('on_pretrain_routine_end', labels, names)
- ############# 训练配置 ##############
- # DDP mode 多机多卡
- if cuda and RANK != -1:
- model = smart_DDP(model)
-
- # Model attributes
- # smart_DDP和de_parallel代码在utils.torch_utils中
- # 对hpy字典中的一些值进行缩放和预设置,以适应不同的层级、类别、图像尺寸和标签平滑需求
- # 默认 nl = 3
- nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
- # hyp-low中给出的 box=0.05; cls=0.5; obj=1.0
- # hyp['box'] = 0.05*3/3=0.05
- hyp['box'] *= 3 / nl # scale to layers
- # hyp['cls'] = 0.5*20/80*3/3=0.125
- hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
- # hyp['obj']=1.0*(640/640)**2*3/nl=1
- hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
- hyp['label_smoothing'] = opt.label_smoothing
- model.nc = nc # attach number of classes to model
- model.hyp = hyp # attach hyperparameters to model
- # 从训练样本标签得到类别权重(和类别中的目标数即类别频率成反比)
- model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
- model.names = names
开始训练的代码,使用先前生成的trian_loader读取图片,送入模型开始训练,并计算损失进行反向传播,以及每轮训练后进行验证计算P,R,mAP等。
- ########################## Start training ##########################
- t0 = time.time()
- nb = len(train_loader) # number of batches
- nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
- # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
- last_opt_step = -1
- # 初始化maps(每个类别的map)和results
- maps = np.zeros(nc) # mAP per class
- results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
- # 设置学习率衰减所进行到的轮次,即使打断训练,使用resume接着训练也能正常衔接之前的训练进行学习率衰减
- scheduler.last_epoch = start_epoch - 1 # do not move
- # 设置amp混合精度训练
- scaler = torch.cuda.amp.GradScaler(enabled=amp)
- # 早停止
- stopper, stop = EarlyStopping(patience=opt.patience), False
- # 初始化损失
- compute_loss = ComputeLoss(model) # init loss class
- callbacks.run('on_train_start')
- LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
- f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
- f"Logging results to {colorstr('bold', save_dir)}\n"
- f'Starting training for {epochs} epochs...')
- # 正式开始训练
- for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
- callbacks.run('on_train_epoch_start')
- model.train()
-
- # Update image weights (optional, single-GPU only)
- if opt.image_weights:
- """
- 如果设置图片采样策略
- 则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数
- 通过random.choices生成图片所有indices从而进行采样
- """
- cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
- iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
- dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
-
- # Update mosaic border (optional)
- # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
- # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
-
- mloss = torch.zeros(3, device=device) # mean losses
- if RANK != -1:
- train_loader.sampler.set_epoch(epoch)
- pbar = enumerate(train_loader)
- LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
- if RANK in {-1, 0}:
- # 进度条显示
- pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
- optimizer.zero_grad() # 梯度清零
- for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
- callbacks.run('on_train_batch_start')
- ni = i + nb * epoch # number integrated batches (since train start)
- imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
-
- """
- 热身训练(前nw次迭代,一般是3)
- 在前nw次迭代中,根据以下方式选取accumulate和学习率
- """
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
- accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
- for j, x in enumerate(optimizer.param_groups):
- """
- bias的学习率从0.1下降到基准学习率lr*lf(epoch),
- 其他的参数学习率从0增加到lr*lf(epoch).
- lf为上面设置的余弦退火的衰减函数
- 动量momentum也从0.9慢慢变到hyp['momentum'](default=0.937)
- """
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
-
- # Multi-scale
- if opt.multi_scale:
- """
- Multi-scale 设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
- """
- sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size
- sf = sz / max(imgs.shape[2:]) # scale factor
- if sf != 1:
- ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
- imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
-
- # Forward
- with torch.cuda.amp.autocast(amp):
- pred = model(imgs) # forward
- # loss是总损失 loss_items是一个元组,包含分类损失,obj损失,boundingbox的回归损失和总损失
- loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
- if RANK != -1:
- # 平均不同gpu之间的梯度
- loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
-
- # Backward
- scaler.scale(loss).backward()
-
- # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
- # 模型反向传播accumulate次之后再根据累计的梯度更新一次参数
- if ni - last_opt_step >= accumulate:
- scaler.unscale_(optimizer) # unscale gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
- scaler.step(optimizer) # optimizer.step
- scaler.update()
- optimizer.zero_grad()
- if ema:
- ema.update(model)
- last_opt_step = ni
-
- # Log
- if RANK in {-1, 0}:
- mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
- mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
- pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
- (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
- callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
- if callbacks.stop_training:
- return
- # end batch ------------------------------------------------------------------------------------------------
-
- # Scheduler 学习率衰减
- lr = [x['lr'] for x in optimizer.param_groups] # for loggers
- scheduler.step()
-
- if RANK in {-1, 0}:
- # mAP
- callbacks.run('on_train_epoch_end', epoch=epoch)
- # 把model中的属性赋值给ema
- ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
- # 判断是否是最后一轮
- final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
- # notest: 是否只测试最后一轮 True: 只测试最后一轮 False: 每轮训练完都测试mAP
- if not noval or final_epoch: # Calculate mAP
- # 测试使用的是ema(对模型的参数做平均)模型
- # verbose设置为true后,每轮的验证都输出每个类别的信息
- results, maps, _ = validate.run(data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- half=amp,
- model=ema.ema,
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- plots=False,
- callbacks=callbacks,
- compute_loss=compute_loss,
- verbose=True)
-
- # Update best mAP
- fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
- stop = stopper(epoch=epoch, fitness=fi) # early stop check
- if fi > best_fitness:
- best_fitness = fi
- log_vals = list(mloss) + list(results) + lr
- callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
-
- # Save model
- """
- 保存带checkpoint的模型用于inference或resuming training
- 保存模型的同时还保存epoch,results,optimizer等信息
- optimizer在最后一轮不会报错
- model保存的是EMA后的模型
- """
- if (not nosave) or (final_epoch and not evolve): # if save
- ckpt = {
- 'epoch': epoch,
- 'best_fitness': best_fitness,
- 'model': deepcopy(de_parallel(model)).half(),
- 'ema': deepcopy(ema.ema).half(),
- 'updates': ema.updates,
- 'optimizer': optimizer.state_dict(),
- 'opt': vars(opt),
- 'git': GIT_INFO, # {remote, branch, commit} if a git repo
- 'date': datetime.now().isoformat()}
-
- # Save last, best and delete
- torch.save(ckpt, last)
- if best_fitness == fi:
- torch.save(ckpt, best)
- if opt.save_period > 0 and epoch % opt.save_period == 0:
- torch.save(ckpt, w / f'epoch{epoch}.pt')
- del ckpt
- callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
-
- # EarlyStopping
- if RANK != -1: # if DDP training
- broadcast_list = [stop if RANK == 0 else None]
- dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
- if RANK != 0:
- stop = broadcast_list[0]
- if stop:
- break # must break all DDP ranks
-
- # end epoch ----------------------------------------------------------------------------------------------------
- # end training --------------------------
3.10 train函数——打印训练信息
- ############################ 打印训练信息 #########################
- if RANK in {-1, 0}:
- LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
- for f in last, best:
- if f.exists():
- strip_optimizer(f) # strip optimizers
- if f is best:
- LOGGER.info(f'\nValidating {f}...')
- results, _, _ = validate.run(
- data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=attempt_load(f, device).half(),
- iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=is_coco,
- verbose=True,
- plots=plots,
- callbacks=callbacks,
- compute_loss=compute_loss) # val best model with plots
- if is_coco:
- callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
-
- callbacks.run('on_train_end', last, best, epoch, results)
-
- torch.cuda.empty_cache() # 释放显存
- return results
使用的命令如下,主要指定数据 --data 、权重 --weights 和模型配置文件 --cfg,其他参数选择使用。为了方便建议写入到xxx.sh文件进行运行,如果权限不够无法使用./xxx.sh运行,使用chmod +777 xxx.sh修改权限,就可以运行了。
python train.py --data ./data/mydata.yaml --weight ./weights/yolov5l.pt --cfg ./models/yolov5l.yaml
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。