赞
踩
翻译:梧承
联系方式:chenwuji2000@foxmail.com
原文链接:User Guide — pandas 1.4.1 documentation
不定时更新
This section covers indexing with a MultiIndex and other advanced indexing features
See the Indexing and Selecting Data for general indexing documentation.
这个章节包括 通过多重索引进行索引 和 其他进阶索引特性 一般情况的索引文档请参阅 数据索引与切片
Warning
Whether a copy or a reference is returned for a setting operation may depend on the context. This is sometimes called chained assignment
and should be avoided. See Returning a View versus Copy.
See the cookbook for some advanced strategies.
这有时被称作链式引用且应当被避免。
Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions in lower dimensional data structures like Series
(1d) and DataFrame
(2d).
In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with all of the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.
特别对于操作高维度数据的人来说,层级索引打开了通往精妙的分析和操作的大门。事实上,它使得你能够在低维数据上保存和操作任意维度的数据。 在本章中,我们将展示 “层级索引” 是如何与先前章节提到的pandas索引功能协同工作的。随后,当讨论到 groupby pivot 和 reshaping data 的时候,我们会通过一些简单的方式展示多重索引是如何通过添加结构来有助于分析数据的。
See the cookbook for some advanced strategies.
The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the axis labels in pandas objects. You can think of MultiIndex
as an array of tuples where each tuple is unique. A MultiIndex
can be created from a list of arrays (using MultiIndex.from_arrays()), an array of tuples (using MultiIndex.from_tuples()), a crossed set of iterables (using MultiIndex.from_product()), or a DataFrame (using MultiIndex.from_frame()). The Index
constructor will attempt to return a MultiIndex
when it is passed a list of tuples. The following examples demonstrate different ways to initialize MultiIndexes.
多重索引实例是标准索引一个层级指针。你可以将多重索引看作一组包含非重复元组的序列。通过MultiIndes.from_arrays()等方式可以从一个列数组创建多重索。当Index的创建者被传入一列元组时,它会尝试将其返回为一个多重索引。下列示例展示了如何通过不同的方式来创建多重索引。
In [1]: arrays = [ ...: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ...: ["one", "two", "one", "two", "one", "two", "one", "two"], ...: ] ...: In [2]: tuples = list(zip(*arrays)) In [3]: tuples Out[3]: [('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two'), ('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')] In [4]: index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) In [5]: index Out[5]: MultiIndex([('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two'), ('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']) In [6]: s = pd.Series(np.random.randn(8), index=index) In [7]: s Out[7]: first second bar one 0.469112 two -0.282863 baz one -1.509059 two -1.135632 foo one 1.212112 two -0.173215 qux one 0.119209 two -1.044236 dtype: float64
When you want every pairing of the elements in two iterables, it can be easier to use the MultiIndex.from_product() method:
当你想从两个可遍历项创造成对的多重索引时,通过...函数是一个更方便的方式。(注:这个有点像解包然后zip封装dict)
In [8]: iterables = [["bar", "baz", "foo", "qux"], ["one", "two"]] In [9]: pd.MultiIndex.from_product(iterables, names=["first", "second"]) Out[9]: MultiIndex([('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two'), ('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second'])
You can also construct a MultiIndex
from a DataFrame
directly, using the method MultiIndex.from_frame(). This is a complementary method to MultiIndex.to_frame().
In [10]: df = pd.DataFrame( ....: [["bar", "one"], ["bar", "two"], ["foo", "one"], ["foo", "two"]], ....: columns=["first", "second"], ....: ) ....: In [11]: pd.MultiIndex.from_frame(df) Out[11]: MultiIndex([('bar', 'one'), ('bar', 'two'), ('foo', 'one'), ('foo', 'two')], names=['first', 'second'])
As a convenience, you can pass a list of arrays directly into Series
or DataFrame
to construct a MultiIndex
automatically:
In [12]: arrays = [ ....: np.array(["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"]), ....: np.array(["one", "two", "one", "two", "one", "two", "one", "two"]), ....: ] ....: In [13]: s = pd.Series(np.random.randn(8), index=arrays) In [14]: s Out[14]: bar one -0.861849 two -2.104569 baz one -0.494929 two 1.071804 foo one 0.721555 two -0.706771 qux one -1.039575 two 0.271860 dtype: float64 In [15]: df = pd.DataFrame(np.random.randn(8, 4), index=arrays) In [16]: df Out[16]: 0 1 2 3 bar one -0.424972 0.567020 0.276232 -1.087401 two -0.673690 0.113648 -1.478427 0.524988 baz one 0.404705 0.577046 -1.715002 -1.039268 two -0.370647 -1.157892 -1.344312 0.844885 foo one 1.075770 -0.109050 1.643563 -1.469388 two 0.357021 -0.674600 -1.776904 -0.968914 qux one -1.294524 0.413738 0.276662 -0.472035 two -0.013960 -0.362543 -0.006154 -0.923061
All of the MultiIndex
constructors accept a names
argument which stores string names for the levels themselves. If no names are provided, None
will be assigned:
所有多重索引的创建者都可以接受一个叫names的参数,用于多重索引的命名,如果没有提供则为None。
In [17]: df.index.names Out[17]: FrozenList([None, None])
This index can back any axis of a pandas object, and the number of levels of the index is up to you:
In [18]: df = pd.DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index) In [19]: df Out[19]: first bar baz foo qux second one two one two one two one two A 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 -0.226169 B 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127 -1.436737 C -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466 -2.006747 In [20]: pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6]) Out[20]: first bar baz foo second one two one two one two first second bar one -0.410001 -0.078638 0.545952 -1.219217 -1.226825 0.769804 two -1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734 baz one 0.959726 -1.110336 -0.619976 0.149748 -0.732339 0.687738 two 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849 foo one -0.954208 1.462696 -1.743161 -0.826591 -0.345352 1.314232 two 0.690579 0.995761 2.396780 0.014871 3.357427 -0.317441
We’ve “sparsified” the higher levels of the indexes to make the console output a bit easier on the eyes. Note that how the index is displayed can be controlled using the multi_sparse
option in pandas.set_options()
: 我们已经解析过了更高层级的索引以便于在终端上展示更便于肉眼观察的内容。请注意,需要被展示的索引可以通过... 进行设置。
In [21]: with pd.option_context("display.multi_sparse", False): ....: df ....:
It’s worth keeping in mind that there’s nothing preventing you from using tuples as atomic labels on an axis:
In [22]: pd.Series(np.random.randn(8), index=tuples) Out[22]: (bar, one) -1.236269 (bar, two) 0.896171 (baz, one) -0.487602 (baz, two) -0.082240 (foo, one) -2.182937 (foo, two) 0.380396 (qux, one) 0.084844 (qux, two) 0.432390 dtype: float64
The reason that the MultiIndex
matters is that it can allow you to do grouping, selection, and reshaping operations as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find yourself working with hierarchically-indexed data without creating a MultiIndex
explicitly yourself. However, when loading data from a file, you may wish to generate your own MultiIndex
when preparing the data set. 多重索引之所以重要的原因在于它允许你进行聚类、选择和重构的操作,正如我们将在接下来的部分展示的那样。你将会看到你是如何在不显性地创建多重索引的情况下进行层级索引的数据操作。 不过,当你从一个文件加载数据的时候,你也许会希望在准备数据集的时候创建自己的多重索引。
The method get_level_values() will return a vector of the labels for each location at a particular level: 方法...会返回包含特定层级的包含标签的向量。(注:即取出给定层级的索引)
In [23]: index.get_level_values(0) Out[23]: Index(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], dtype='object', name='first') In [24]: index.get_level_values("second") Out[24]: Index(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], dtype='object', name='second')
One of the important features of hierarchical indexing is that you can select data by a “partial” label identifying a subgroup in the data. Partial selection “drops” levels of the hierarchical index in the result in a completely analogous way to selecting a column in a regular DataFrame: 层级索引的重要特性之一是,你可以通过 局部标签 来定义数据中的一个子集。局部选择 在结果中丢弃了层级索引的层级,采用完全模拟(analogous)的方式来从一个常规的df中选择给定的列。(注:这里有点看不懂示例,感觉像是chain indexing)
In [25]: df["bar"] Out[25]: second one two A 0.895717 0.805244 B 0.410835 0.813850 C -1.413681 1.607920 In [26]: df["bar", "one"] Out[26]: A 0.895717 B 0.410835 C -1.413681 Name: (bar, one), dtype: float64 In [27]: df["bar"]["one"] Out[27]: A 0.895717 B 0.410835 C -1.413681 Name: one, dtype: float64 In [28]: s["qux"] Out[28]: one -1.039575 two 0.271860 dtype: float64
See Cross-section with hierarchical index for how to select on a deeper level.
The MultiIndex keeps all the defined levels of an index, even if they are not actually used. When slicing an index, you may notice this. For example: 即便没有被使用,多重索引也总是会保留索引中所有被定义的层级。当对索引进行切片室你也许会注意到这个情况,例如:
In [29]: df.columns.levels # original MultiIndex Out[29]: FrozenList([['bar', 'baz', 'foo', 'qux'], ['one', 'two']]) In [30]: df[["foo","qux"]].columns.levels # sliced Out[30]: FrozenList([['bar', 'baz', 'foo', 'qux'], ['one', 'two']])
This is done to avoid a recomputation of the levels in order to make slicing highly performant. If you want to see only the used levels, you can use the get_level_values() method. 这么做是为了避免层级的重复计算以提高切片的效率,如果你只想保留使用过的层级,你可以使用...
(注:这个方法同样可以用于获取指定层级的索引值)
In [31]: df[["foo", "qux"]].columns.to_numpy() Out[31]: array([('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], dtype=object) # for a specific level In [32]: df[["foo", "qux"]].columns.get_level_values(0) Out[32]: Index(['foo', 'foo', 'qux', 'qux'], dtype='object', name='first')
To reconstruct the MultiIndex
with only the used levels, the remove_unused_levels() method may be used. 仅保留多重索引中使用过的层级,可以考虑使用...
In [33]: new_mi = df[["foo", "qux"]].columns.remove_unused_levels() In [34]: new_mi.levels Out[34]: FrozenList([['foo', 'qux'], ['one', 'two']])
reindex
数据对齐与reindex的使用Operations between differently-indexed objects having MultiIndex
on the axes will work as you expect; data alignment will work the same as an Index of tuples: 对于在轴上拥有不同的多重索引的实例,其间的操作会如你所期待的那样;数据的对齐方式等同于???(注:说人话,多重索引会和普通索引一样自动对齐正常工作)
In [35]: s + s[:-2] Out[35]: bar one -1.723698 two -4.209138 baz one -0.989859 two 2.143608 foo one 1.443110 two -1.413542 qux one NaN two NaN dtype: float64 In [36]: s + s[::2] Out[36]: bar one -1.723698 two NaN baz one -0.989859 two NaN foo one 1.443110 two NaN qux one -2.079150 two NaN dtype: float64
The reindex() method of Series
/DataFrames
can be called with another MultiIndex
, or even a list or array of tuples: 直接参见下方代码
In [37]: s.reindex(index[:3]) Out[37]: first second bar one -0.861849 two -2.104569 baz one -0.494929 dtype: float64 In [38]: s.reindex([("foo", "two"), ("bar", "one"), ("qux", "one"), ("baz", "one")]) Out[38]: foo two -0.706771 bar one -0.861849 qux one -1.039575 baz one -0.494929 dtype: float64
Syntactically integrating MultiIndex
in advanced indexing with .loc
is a bit challenging, but we’ve made every effort to do so. In general, MultiIndex keys take the form of tuples. For example, the following works as you would expect: 通过.loc来符合语法地进行进阶索引有一定的挑战性,但是我们已经尽力做好。一般来说,需要通过传入元组的方式进行多重索引,例如:
In [39]: df = df.T In [40]: df Out[40]: A B C first second bar one 0.895717 0.410835 -1.413681 two 0.805244 0.813850 1.607920 baz one -1.206412 0.132003 1.024180 two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372 qux one -1.170299 1.130127 0.974466 two -0.226169 -1.436737 -2.006747 In [41]: df.loc[("bar", "two")] Out[41]: A 0.805244 B 0.813850 C 1.607920 Name: (bar, two), dtype: float64
Note that df.loc['bar', 'two']
would also work in this example, but this shorthand notation can lead to ambiguity in general. 注意...的方式同样可以在这样的情况下工作,但是这是一种容易引起混淆的歧义的方式。
If you also want to index a specific column with .loc
, you must use a tuple like this: 如果你想通过.loc来索引一个给定的列,你必须像这样使用索引:
In [42]: df.loc[("bar", "two"), "A"] Out[42]: 0.8052440253863785
You don’t have to specify all levels of the MultiIndex
by passing only the first elements of the tuple. For example, you can use “partial” indexing to get all elements with bar
in the first level as follows: 不需要给定所有完整的索引,直接参见代码:
In [43]: df.loc["bar"] Out[43]: A B C second one 0.895717 0.410835 -1.413681 two 0.805244 0.813850 1.607920
This is a shortcut for the slightly more verbose notation df.loc[('bar',),]
(equivalent to df.loc['bar',]
in this example).
“Partial” slicing also works quite nicely. 局部切片同样可以正常工作
In [44]: df.loc["baz":"foo"] Out[44]: A B C first second baz one -1.206412 0.132003 1.024180 two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372
You can slice with a ‘range’ of values, by providing a slice of tuples. 你可以通过传入一系列元组来实现一个范围的值的切片。
In [45]: df.loc[("baz", "two"):("qux", "one")] Out[45]: A B C first second baz two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372 qux one -1.170299 1.130127 0.974466 In [46]: df.loc[("baz", "two"):"foo"] # baz和two下的值 与 foo下的所有值 Out[46]: A B C first second baz two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372
Passing a list of labels or tuples works similar to reindexing:
In [47]: df.loc[[("bar", "two"), ("qux", "one")]] Out[47]: A B C first second bar two 0.805244 0.813850 1.607920 qux one -1.170299 1.130127 0.974466
Note
It is important to note that tuples and lists are not treated identically in pandas when it comes to indexing. Whereas a tuple is interpreted as one multi-level key, a list is used to specify several keys. Or in other words, tuples go horizontally (traversing levels), lists go vertically (scanning levels). 没太看懂 直接参考下面的代码
Importantly, a list of tuples indexes several complete MultiIndex
keys, whereas a tuple of lists refer to several values within a level: 重要的是,一个包含多个元组的列表可以构建许多完整的多重索引,但一个包含列表的元祖指的是一个层级下的若干值。
In [48]: s = pd.Series( ....: [1, 2, 3, 4, 5, 6], ....: index=pd.MultiIndex.from_product([["A", "B"], ["c", "d", "e"]]), ....: ) ....: In [49]: s.loc[[("A", "c"), ("B", "d")]] # list of tuples Out[49]: A c 1 B d 5 dtype: int64 In [50]: s.loc[(["A", "B"], ["c", "d"])] # tuple of lists Out[50]: A c 1 d 2 B c 4 d 5 dtype: int64
You can slice a MultiIndex
by providing multiple indexers.
You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers.
You can use slice(None)
to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as slice(None)
.
As usual, both sides of the slicers are included as this is label indexing.
Warning
You should specify all axes in the .loc
specifier, meaning the indexer for the index and for the columns. There are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MultiIndex
for the rows.
You should do this: 警告 你应该制定所有的轴当使用.loc进行分类的时候,明确指出是来自index的索引还是columns的索引。有时候会发生奇怪的情况因为错误地在两个轴上解析了索引,而不是对于多重行索引进行解析。 建议做:
df.loc[(slice("A1", "A3"), ...), :] # noqa: E999
You should not do this: 不要这么做:
df.loc[(slice("A1", "A3"), ...)] # noqa: E999 这里没有传入列索引,要在)后面加上 ,: In [51]: def mklbl(prefix, n): ....: return ["%s%s" % (prefix, i) for i in range(n)] ....: In [52]: miindex = pd.MultiIndex.from_product( ....: [mklbl("A", 4), mklbl("B", 2), mklbl("C", 4), mklbl("D", 2)] ....: ) ....: In [53]: micolumns = pd.MultiIndex.from_tuples( ....: [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"] ....: ) ....: In [54]: dfmi = ( ....: pd.DataFrame( ....: np.arange(len(miindex) * len(micolumns)).reshape( ....: (len(miindex), len(micolumns)) ....: ), ....: index=miindex, ....: columns=micolumns, ....: ) ....: .sort_index() ....: .sort_index(axis=1) ....: ) ....: In [55]: dfmi Out[55]: lvl0 a b lvl1 bar foo bah foo A0 B0 C0 D0 1 0 3 2 D1 5 4 7 6 C1 D0 9 8 11 10 D1 13 12 15 14 C2 D0 17 16 19 18 ... ... ... ... ... A3 B1 C1 D1 237 236 239 238 C2 D0 241 240 243 242 D1 245 244 247 246 C3 D0 249 248 251 250 D1 253 252 255 254 [64 rows x 4 columns]
Basic MultiIndex slicing using slices, lists, and labels. 通过slices, lists, labels进行基础的多重索引切片。
In [56]: dfmi.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :] Out[56]: lvl0 a b lvl1 bar foo bah foo A1 B0 C1 D0 73 72 75 74 D1 77 76 79 78 C3 D0 89 88 91 90 D1 93 92 95 94 B1 C1 D0 105 104 107 106 ... ... ... ... ... A3 B0 C3 D1 221 220 223 222 B1 C1 D0 233 232 235 234 D1 237 236 239 238 C3 D0 249 248 251 250 D1 253 252 255 254 [24 rows x 4 columns]
You can use pandas.IndexSlice to facilitate a more natural syntax using :
, rather than using slice(None)
. 你可以参阅...来构建一个更自然的语法,而不是...
In [57]: idx = pd.IndexSlice In [58]: dfmi.loc[idx[:, :, ["C1", "C3"]], idx[:, "foo"]] Out[58]: lvl0 a b lvl1 foo foo A0 B0 C1 D0 8 10 D1 12 14 C3 D0 24 26 D1 28 30 B1 C1 D0 40 42 ... ... ... A3 B0 C3 D1 220 222 B1 C1 D0 232 234 D1 236 238 C3 D0 248 250 D1 252 254 [32 rows x 2 columns]
It is possible to perform quite complicated selections using this method on multiple axes at the same time. 通过这种方式我们可以在不同的轴上进行十分复杂的选择与切片。
In [59]: dfmi.loc["A1", (slice(None), "foo")] Out[59]: lvl0 a b lvl1 foo foo B0 C0 D0 64 66 D1 68 70 C1 D0 72 74 D1 76 78 C2 D0 80 82 ... ... ... B1 C1 D1 108 110 C2 D0 112 114 D1 116 118 C3 D0 120 122 D1 124 126 [16 rows x 2 columns] In [60]: dfmi.loc[idx[:, :, ["C1", "C3"]], idx[:, "foo"]] Out[60]: lvl0 a b lvl1 foo foo A0 B0 C1 D0 8 10 D1 12 14 C3 D0 24 26 D1 28 30 B1 C1 D0 40 42 ... ... ... A3 B0 C3 D1 220 222 B1 C1 D0 232 234 D1 236 238 C3 D0 248 250 D1 252 254 [32 rows x 2 columns]
Using a boolean indexer you can provide selection related to the values. 使用布尔型的索引值可以提供有关值的选择。
In [61]: mask = dfmi[("a", "foo")] > 200 In [62]: dfmi.loc[idx[mask, :, ["C1", "C3"]], idx[:, "foo"]] Out[62]: lvl0 a b lvl1 foo foo A3 B0 C1 D1 204 206 C3 D0 216 218 D1 220 222 B1 C1 D0 232 234 D1 236 238 C3 D0 248 250 D1 252 254
You can also specify the axis
argument to .loc
to interpret the passed slicers on a single axis. 你同样可以给定axis参数来让.loc在特定单一轴上解析切片器。
In [63]: dfmi.loc(axis=0)[:, :, ["C1", "C3"]] Out[63]: lvl0 a b lvl1 bar foo bah foo A0 B0 C1 D0 9 8 11 10 D1 13 12 15 14 C3 D0 25 24 27 26 D1 29 28 31 30 B1 C1 D0 41 40 43 42 ... ... ... ... ... A3 B0 C3 D1 221 220 223 222 B1 C1 D0 233 232 235 234 D1 237 236 239 238 C3 D0 249 248 251 250 D1 253 252 255 254 [32 rows x 4 columns]
Furthermore, you can set the values using the following methods. 你甚至可以通过这种方式来赋值。
In [64]: df2 = dfmi.copy() In [65]: df2.loc(axis=0)[:, :, ["C1", "C3"]] = -10 In [66]: df2 Out[66]: lvl0 a b lvl1 bar foo bah foo A0 B0 C0 D0 1 0 3 2 D1 5 4 7 6 C1 D0 -10 -10 -10 -10 D1 -10 -10 -10 -10 C2 D0 17 16 19 18 ... ... ... ... ... A3 B1 C1 D1 -10 -10 -10 -10 C2 D0 241 240 243 242 D1 245 244 247 246 C3 D0 -10 -10 -10 -10 D1 -10 -10 -10 -10 [64 rows x 4 columns]
You can use a right-hand-side of an alignable object as well. 以下方式同样可用。
In [67]: df2 = dfmi.copy() In [68]: df2.loc[idx[:, :, ["C1", "C3"]], :] = df2 * 1000 In [69]: df2 Out[69]: lvl0 a b lvl1 bar foo bah foo A0 B0 C0 D0 1 0 3 2 D1 5 4 7 6 C1 D0 9000 8000 11000 10000 D1 13000 12000 15000 14000 C2 D0 17 16 19 18 ... ... ... ... ... A3 B1 C1 D1 237000 236000 239000 238000 C2 D0 241 240 243 242 D1 245 244 247 246 C3 D0 249000 248000 251000 250000 D1 253000 252000 255000 254000 [64 rows x 4 columns]
The xs() method of DataFrame
additionally takes a level argument to make selecting data at a particular level of a MultiIndex
easier. DataFrame的xs方法可以额外接收一个参数以更方便地从多重索引的特定层级选择数据。
In [70]: df Out[70]: A B C first second bar one 0.895717 0.410835 -1.413681 two 0.805244 0.813850 1.607920 baz one -1.206412 0.132003 1.024180 two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372 qux one -1.170299 1.130127 0.974466 two -0.226169 -1.436737 -2.006747 In [71]: df.xs("one", level="second") Out[71]: A B C first bar 0.895717 0.410835 -1.413681 baz -1.206412 0.132003 1.024180 foo 1.431256 -0.076467 0.875906 qux -1.170299 1.130127 0.974466 # using the slicers In [72]: df.loc[(slice(None), "one"), :] Out[72]: A B C first second bar one 0.895717 0.410835 -1.413681 baz one -1.206412 0.132003 1.024180 foo one 1.431256 -0.076467 0.875906 qux one -1.170299 1.130127 0.974466
You can also select on the columns with xs
, by providing the axis argument. 你也可以通过传入轴参数来用xs选择列。
In [73]: df = df.T In [74]: df.xs("one", level="second", axis=1) Out[74]: first bar baz foo qux A 0.895717 -1.206412 1.431256 -1.170299 B 0.410835 0.132003 -0.076467 1.130127 C -1.413681 1.024180 0.875906 0.974466 # using the slicers In [75]: df.loc[:, (slice(None), "one")] Out[75]: first bar baz foo qux second one one one one A 0.895717 -1.206412 1.431256 -1.170299 B 0.410835 0.132003 -0.076467 1.130127 C -1.413681 1.024180 0.875906 0.974466
xs
also allows selection with multiple keys. 直接参考代码:
In [76]: df.xs(("one", "bar"), level=("second", "first"), axis=1) Out[76]: first bar second one A 0.895717 B 0.410835 C -1.413681 # using the slicers In [77]: df.loc[:, ("bar", "one")] Out[77]: A 0.895717 B 0.410835 C -1.413681 Name: (bar, one), dtype: float64
You can pass drop_level=False
to xs
to retain the level that was selected. 你可以传入...来使xs保留已经过筛选的层级。
In [78]: df.xs("one", level="second", axis=1, drop_level=False) Out[78]: first bar baz foo qux second one one one one A 0.895717 -1.206412 1.431256 -1.170299 B 0.410835 0.132003 -0.076467 1.130127 C -1.413681 1.024180 0.875906 0.974466
Compare the above with the result using drop_level=True
(the default value). 比较结果可见...的效果。
In [79]: df.xs("one", level="second", axis=1, drop_level=True) Out[79]: first bar baz foo qux A 0.895717 -1.206412 1.431256 -1.170299 B 0.410835 0.132003 -0.076467 1.130127 C -1.413681 1.024180 0.875906 0.974466
Using the parameter level
in the reindex() and align() methods of pandas objects is useful to broadcast values across a level. For instance: 通过在pandas实例的..和..方法中传入参数level是一个有益于在层级之间广播值的方法。参见代码:
In [80]: midx = pd.MultiIndex( ....: levels=[["zero", "one"], ["x", "y"]], codes=[[1, 1, 0, 0], [1, 0, 1, 0]] ....: ) ....: In [81]: df = pd.DataFrame(np.random.randn(4, 2), index=midx) In [82]: df Out[82]: 0 1 one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520 In [83]: df2 = df.groupby(level=0).mean() In [84]: df2 Out[84]: 0 1 one 1.060074 -0.109716 zero 1.271532 0.713416 In [85]: df2.reindex(df.index, level=0) Out[85]: 0 1 one y 1.060074 -0.109716 x 1.060074 -0.109716 zero y 1.271532 0.713416 x 1.271532 0.713416 # aligning In [86]: df_aligned, df2_aligned = df.align(df2, level=0) In [87]: df_aligned Out[87]: 0 1 one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520 In [88]: df2_aligned Out[88]: 0 1 one y 1.060074 -0.109716 x 1.060074 -0.109716 zero y 1.271532 0.713416 x 1.271532 0.713416
swaplevel
通过swaplevel来交换层级The swaplevel() method can switch the order of two levels: swaplevel可以交换层级的位置
In [89]: df[:5] Out[89]: 0 1 one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520 In [90]: df[:5].swaplevel(0, 1, axis=0) Out[90]: 0 1 y one 1.519970 -0.493662 x one 0.600178 0.274230 y zero 0.132885 -0.023688 x zero 2.410179 1.450520
reorder_levels
The reorder_levels() method generalizes the swaplevel
method, allowing you to permute the hierarchical index levels in one step: 等同于swaplevel,类似于iloc和loc的关系,一个使用int一个使用string。
In [91]: df[:5].reorder_levels([1, 0], axis=0) Out[91]: 0 1 y one 1.519970 -0.493662 x one 0.600178 0.274230 y zero 0.132885 -0.023688 x zero 2.410179 1.450520
Index
or MultiIndex
索引和多重索引的重命名The rename() method is used to rename the labels of a MultiIndex
, and is typically used to rename the columns of a DataFrame
. The columns
argument of rename
allows a dictionary to be specified that includes only the columns you wish to rename. rename方法可以用同样的语法适用于多重索引的重命名
In [92]: df.rename(columns={0: "col0", 1: "col1"}) Out[92]: col0 col1 one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520
This method can also be used to rename specific labels of the main index of the DataFrame
.
In [93]: df.rename(index={"one": "two", "y": "z"}) Out[93]: 0 1 two z 1.519970 -0.493662 x 0.600178 0.274230 zero z 0.132885 -0.023688 x 2.410179 1.450520
The rename_axis() method is used to rename the name of a Index
or MultiIndex
. In particular, the names of the levels of a MultiIndex
can be specified, which is useful if reset_index()
is later used to move the values from the MultiIndex
to a column. 方法rename_axis()是专门用来命名索引或者多重索引的名字的。
In [94]: df.rename_axis(index=["abc", "def"]) Out[94]: 0 1 abc def one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520
Note that the columns of a DataFrame
are an index, so that using rename_axis
with the columns
argument will change the name of that index.
In [95]: df.rename_axis(columns="Cols").columns Out[95]: RangeIndex(start=0, stop=2, step=1, name='Cols')
Both rename
and rename_axis
support specifying a dictionary, Series
or a mapping function to map labels/names to new values. 二者都支持使用字典、序列或者是一个map的值。
When working with an Index
object directly, rather than via a DataFrame
, Index.set_names() can be used to change the names.
In [96]: mi = pd.MultiIndex.from_product([[1, 2], ["a", "b"]], names=["x", "y"]) In [97]: mi.names Out[97]: FrozenList(['x', 'y']) In [98]: mi2 = mi.rename("new name", level=0) In [99]: mi2 Out[99]: MultiIndex([(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')], names=['new name', 'y'])
You cannot set the names of the MultiIndex via a level.
In [100]: mi.levels[0].name = "name via level" --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Input In [100], in <module> ----> 1 mi.levels[0].name = "name via level" File /pandas/pandas/core/indexes/base.py:1661, in Index.name(self, value) 1657 @name.setter 1658 def name(self, value: Hashable): 1659 if self._no_setting_name: 1660 # Used in MultiIndex.levels to avoid silently ignoring name updates. -> 1661 raise RuntimeError( 1662 "Cannot set name on a level of a MultiIndex. Use " 1663 "'MultiIndex.set_names' instead." 1664 ) 1665 maybe_extract_name(value, None, type(self)) 1666 self._name = value RuntimeError: Cannot set name on a level of a MultiIndex. Use 'MultiIndex.set_names' instead.
Use Index.set_names() instead.
MultiIndex
多重索引的排序For MultiIndex-ed objects to be indexed and sliced effectively, they need to be sorted. As with any index, you can use sort_index(). 多重索引的实例需要经过排序才能快速地切片或者索引。你可以使用sort_index():
In [101]: import random In [102]: random.shuffle(tuples) In [103]: s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples)) In [104]: s Out[104]: baz two 0.206053 qux two -0.251905 foo one -2.213588 bar one 1.063327 qux one 1.266143 baz one 0.299368 bar two -0.863838 foo two 0.408204 dtype: float64 In [105]: s.sort_index() Out[105]: bar one 1.063327 two -0.863838 baz one 0.299368 two 0.206053 foo one -2.213588 two 0.408204 qux one 1.266143 two -0.251905 dtype: float64 In [106]: s.sort_index(level=0) Out[106]: bar one 1.063327 two -0.863838 baz one 0.299368 two 0.206053 foo one -2.213588 two 0.408204 qux one 1.266143 two -0.251905 dtype: float64 In [107]: s.sort_index(level=1) Out[107]: bar one 1.063327 baz one 0.299368 foo one -2.213588 qux one 1.266143 bar two -0.863838 baz two 0.206053 foo two 0.408204 qux two -0.251905 dtype: float64
You may also pass a level name to sort_index
if the MultiIndex
levels are named. 如果多重索引被命名了,你同样可以将它们的名字传入level参数。
In [108]: s.index.set_names(["L1", "L2"], inplace=True) In [109]: s.sort_index(level="L1") Out[109]: L1 L2 bar one 1.063327 two -0.863838 baz one 0.299368 two 0.206053 foo one -2.213588 two 0.408204 qux one 1.266143 two -0.251905 dtype: float64 In [110]: s.sort_index(level="L2") Out[110]: L1 L2 bar one 1.063327 baz one 0.299368 foo one -2.213588 qux one 1.266143 bar two -0.863838 baz two 0.206053 foo two 0.408204 qux two -0.251905 dtype: float64
On higher dimensional objects, you can sort any of the other axes by level if they have a MultiIndex
:
In [111]: df.T.sort_index(level=1, axis=1) Out[111]: one zero one zero x x y y 0 0.600178 2.410179 1.519970 0.132885 1 0.274230 1.450520 -0.493662 -0.023688
Indexing will work even if the data are not sorted, but will be rather inefficient (and show a PerformanceWarning
). It will also return a copy of the data rather than a view: 没有经过排序的数据索引也可以进行但会报性能警告,会返回一个副本而不是视图(内存占用)。
In [112]: dfm = pd.DataFrame( .....: {"jim": [0, 0, 1, 1], "joe": ["x", "x", "z", "y"], "jolie": np.random.rand(4)} .....: ) .....: In [113]: dfm = dfm.set_index(["jim", "joe"]) In [114]: dfm Out[114]: jolie jim joe 0 x 0.490671 x 0.120248 1 z 0.537020 y 0.110968 In [4]: dfm.loc[(1, 'z')] PerformanceWarning: indexing past lexsort depth may impact performance. Out[4]: jolie jim joe 1 z 0.64094
Furthermore, if you try to index something that is not fully lexsorted, this can raise:
In [5]: dfm.loc[(0, 'y'):(1, 'z')] UnsortedIndexError: 'Key length (2) was greater than MultiIndex lexsort depth (1)'
The is_monotonic_increasing()
method on a MultiIndex
shows if the index is sorted: 多重索引的方法...会显示其是否经过排序。
In [115]: dfm.index.is_monotonic_increasing Out[115]: False In [116]: dfm = dfm.sort_index() In [117]: dfm Out[117]: jolie jim joe 0 x 0.490671 x 0.120248 1 y 0.110968 z 0.537020 In [118]: dfm.index.is_monotonic_increasing Out[118]: True
And now selection works as expected. 现在选择会正常工作了
In [119]: dfm.loc[(0, "y"):(1, "z")] Out[119]: jolie jim joe 1 y 0.110968 z 0.537020
Similar to NumPy ndarrays, pandas Index
, Series
, and DataFrame
also provides the take() method that retrieves elements along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index positions. take
will also accept negative integers as relative positions to the end of the object.
类似于Numpy的ndarrays,pandas中的index、series和dataframe同样提供take()方法来从给定轴和indices的数据中提取元素。 给定的indices可以是一个列或者ndarray,同样可以接受负值(从末尾开始数)。
In [120]: index = pd.Index(np.random.randint(0, 1000, 10)) In [121]: index Out[121]: Int64Index([214, 502, 712, 567, 786, 175, 993, 133, 758, 329], dtype='int64') In [122]: positions = [0, 9, 3] In [123]: index[positions] Out[123]: Int64Index([214, 329, 567], dtype='int64') In [124]: index.take(positions) Out[124]: Int64Index([214, 329, 567], dtype='int64') In [125]: ser = pd.Series(np.random.randn(10)) In [126]: ser.iloc[positions] Out[126]: 0 -0.179666 9 1.824375 3 0.392149 dtype: float64 In [127]: ser.take(positions) Out[127]: 0 -0.179666 9 1.824375 3 0.392149 dtype: float64
For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions.
In [128]: frm = pd.DataFrame(np.random.randn(5, 3)) In [129]: frm.take([1, 4, 3]) Out[129]: 0 1 2 1 -1.237881 0.106854 -1.276829 4 0.629675 -1.425966 1.857704 3 0.979542 -1.633678 0.615855 In [130]: frm.take([0, 2], axis=1) Out[130]: 0 2 0 0.595974 0.601544 1 -1.237881 -1.276829 2 -0.767101 1.499591 3 0.979542 0.615855 4 0.629675 1.857704
It is important to note that the take
method on pandas objects are not intended to work on boolean indices and may return unexpected results.
需要注意take方法并不适用于布尔型的值,可能返回非预期的结果。(注:.loc他不香嘛)
In [131]: arr = np.random.randn(10) In [132]: arr.take([False, False, True, True]) Out[132]: array([-1.1935, -1.1935, 0.6775, 0.6775]) In [133]: arr[[0, 1]] Out[133]: array([-1.1935, 0.6775]) In [134]: ser = pd.Series(np.random.randn(10)) In [135]: ser.take([False, False, True, True]) Out[135]: 0 0.233141 0 0.233141 1 -0.223540 1 -0.223540 dtype: float64 In [136]: ser.iloc[[0, 1]] Out[136]: 0 0.233141 1 -0.223540 dtype: float64
Finally, as a small note on performance, because the take
method handles a narrower range of inputs, it can offer performance that is a good deal faster than fancy indexing.
take比iloc拥有更好的性能
In [137]: arr = np.random.randn(10000, 5) In [138]: indexer = np.arange(10000) In [139]: random.shuffle(indexer) In [140]: %timeit arr[indexer] .....: %timeit arr.take(indexer, axis=0) .....: 210 us +- 12.5 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) 63.6 us +- 6.41 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) In [141]: ser = pd.Series(arr[:, 0]) In [142]: %timeit ser.iloc[indexer] .....: %timeit ser.take(indexer) .....: 99.2 us +- 9.69 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) 92.6 us +- 6.58 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
We have discussed MultiIndex
in the previous sections pretty extensively. Documentation about DatetimeIndex
and PeriodIndex
are shown here, and documentation about TimedeltaIndex
is found here.
In the following sub-sections we will highlight some other index types.
我们已经在前面的章节中非常深入地讨论过有关 多重索引 的问题。有关 DatetimeIndex
、PeriodIndex
和TimedeltaIndex
的相关文档可以在链接中找到。
CategoricalIndex is a type of index that is useful for supporting indexing with duplicates. This is a container around a Categorical and allows efficient indexing and storage of an index with a large number of duplicated elements.
In [143]: from pandas.api.types import CategoricalDtype In [144]: df = pd.DataFrame({"A": np.arange(6), "B": list("aabbca")}) In [145]: df["B"] = df["B"].astype(CategoricalDtype(list("cab"))) In [146]: df Out[146]: A B 0 0 a 1 1 a 2 2 b 3 3 b 4 4 c 5 5 a In [147]: df.dtypes Out[147]: A int64 B category dtype: object In [148]: df["B"].cat.categories Out[148]: Index(['c', 'a', 'b'], dtype='object')
Setting the index will create a CategoricalIndex
.
In [149]: df2 = df.set_index("B") In [150]: df2.index Out[150]: CategoricalIndex(['a', 'a', 'b', 'b', 'c', 'a'], categories=['c', 'a', 'b'], ordered=False, dtype='category', name='B')
Indexing with __getitem__/.iloc/.loc
works similarly to an Index
with duplicates. The indexers must be in the category or the operation will raise a KeyError
.
In [151]: df2.loc["a"] Out[151]: A B a 0 a 1 a 5
The CategoricalIndex
is preserved after indexing:
In [152]: df2.loc["a"].index Out[152]: CategoricalIndex(['a', 'a', 'a'], categories=['c', 'a', 'b'], ordered=False, dtype='category', name='B')
Sorting the index will sort by the order of the categories (recall that we created the index with CategoricalDtype(list('cab'))
, so the sorted order is cab
).
In [153]: df2.sort_index() Out[153]: A B c 4 a 0 a 1 a 5 b 2 b 3
Groupby operations on the index will preserve the index nature as well.
In [154]: df2.groupby(level=0).sum() Out[154]: A B c 4 a 6 b 5 In [155]: df2.groupby(level=0).sum().index Out[155]: CategoricalIndex(['c', 'a', 'b'], categories=['c', 'a', 'b'], ordered=False, dtype='category', name='B')
Reindexing operations will return a resulting index based on the type of the passed indexer. Passing a list will return a plain-old Index
; indexing with a Categorical
will return a CategoricalIndex
, indexed according to the categories of the passed Categorical
dtype. This allows one to arbitrarily index these even with values not in the categories, similarly to how you can reindex any pandas index.
In [156]: df3 = pd.DataFrame( .....: {"A": np.arange(3), "B": pd.Series(list("abc")).astype("category")} .....: ) .....: In [157]: df3 = df3.set_index("B") In [158]: df3 Out[158]: A B a 0 b 1 c 2 In [159]: df3.reindex(["a", "e"]) Out[159]: A B a 0.0 e NaN In [160]: df3.reindex(["a", "e"]).index Out[160]: Index(['a', 'e'], dtype='object', name='B') In [161]: df3.reindex(pd.Categorical(["a", "e"], categories=list("abe"))) Out[161]: A B a 0.0 e NaN In [162]: df3.reindex(pd.Categorical(["a", "e"], categories=list("abe"))).index Out[162]: CategoricalIndex(['a', 'e'], categories=['a', 'b', 'e'], ordered=False, dtype='category', name='B')
Warning
Reshaping and Comparison operations on a CategoricalIndex
must have the same categories or a TypeError
will be raised.
In [163]: df4 = pd.DataFrame({"A": np.arange(2), "B": list("ba")}) In [164]: df4["B"] = df4["B"].astype(CategoricalDtype(list("ab"))) In [165]: df4 = df4.set_index("B") In [166]: df4.index Out[166]: CategoricalIndex(['b', 'a'], categories=['a', 'b'], ordered=False, dtype='category', name='B') In [167]: df5 = pd.DataFrame({"A": np.arange(2), "B": list("bc")}) In [168]: df5["B"] = df5["B"].astype(CategoricalDtype(list("bc"))) In [169]: df5 = df5.set_index("B") In [170]: df5.index Out[170]: CategoricalIndex(['b', 'c'], categories=['b', 'c'], ordered=False, dtype='category', name='B') In [1]: pd.concat([df4, df5]) TypeError: categories must match existing categories when appending
Deprecated since version 1.4.0: In pandas 2.0, Index will become the default index type for numeric types instead of Int64Index
, Float64Index
and UInt64Index
and those index types are therefore deprecated and will be removed in a futire version. RangeIndex
will not be removed, as it represents an optimized version of an integer index.
Int64Index is a fundamental basic index in pandas. This is an immutable array implementing an ordered, sliceable set.
RangeIndex is a sub-class of Int64Index
that provides the default index for all NDFrame
objects. RangeIndex
is an optimized version of Int64Index
that can represent a monotonic ordered set. These are analogous to Python range types.
Deprecated since version 1.4.0: Index will become the default index type for numeric types in the future instead of Int64Index
, Float64Index
and UInt64Index
and those index types are therefore deprecated and will be removed in a future version of Pandas. RangeIndex
will not be removed as it represents an optimized version of an integer index.
By default a Float64Index will be automatically created when passing floating, or mixed-integer-floating values in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc
for scalar indexing and slicing work exactly the same.
In [171]: indexf = pd.Index([1.5, 2, 3, 4.5, 5]) In [172]: indexf Out[172]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64') In [173]: sf = pd.Series(range(5), index=indexf) In [174]: sf Out[174]: 1.5 0 2.0 1 3.0 2 4.5 3 5.0 4 dtype: int64
Scalar selection for [],.loc
will always be label based. An integer will match an equal float index (e.g. 3
is equivalent to 3.0
).
In [175]: sf[3] Out[175]: 2 In [176]: sf[3.0] Out[176]: 2 In [177]: sf.loc[3] Out[177]: 2 In [178]: sf.loc[3.0] Out[178]: 2
The only positional indexing is via iloc
.
In [179]: sf.iloc[3] Out[179]: 3
A scalar index that is not found will raise a KeyError
. Slicing is primarily on the values of the index when using [],ix,loc
, and always positional when using iloc
. The exception is when the slice is boolean, in which case it will always be positional.
In [180]: sf[2:4] Out[180]: 2.0 1 3.0 2 dtype: int64 In [181]: sf.loc[2:4] Out[181]: 2.0 1 3.0 2 dtype: int64 In [182]: sf.iloc[2:4] Out[182]: 3.0 2 4.5 3 dtype: int64
In float indexes, slicing using floats is allowed.
In [183]: sf[2.1:4.6] Out[183]: 3.0 2 4.5 3 dtype: int64 In [184]: sf.loc[2.1:4.6] Out[184]: 3.0 2 4.5 3 dtype: int64
In non-float indexes, slicing using floats will raise a TypeError
.
In [1]: pd.Series(range(5))[3.5] TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index) In [1]: pd.Series(range(5))[3.5:4.5] TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)
Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat irregular timedelta-like indexing scheme, but the data is recorded as floats. This could, for example, be millisecond offsets.
In [185]: dfir = pd.concat( .....: [ .....: pd.DataFrame( .....: np.random.randn(5, 2), index=np.arange(5) * 250.0, columns=list("AB") .....: ), .....: pd.DataFrame( .....: np.random.randn(6, 2), .....: index=np.arange(4, 10) * 250.1, .....: columns=list("AB"), .....: ), .....: ] .....: ) .....: In [186]: dfir Out[186]: A B 0.0 -0.435772 -1.188928 250.0 -0.808286 -0.284634 500.0 -1.815703 1.347213 750.0 -0.243487 0.514704 1000.0 1.162969 -0.287725 1000.4 -0.179734 0.993962 1250.5 -0.212673 0.909872 1500.6 -0.733333 -0.349893 1750.7 0.456434 -0.306735 2000.8 0.553396 0.166221 2250.9 -0.101684 -0.734907
Selection operations then will always work on a value basis, for all selection operators.
In [187]: dfir[0:1000.4] Out[187]: A B 0.0 -0.435772 -1.188928 250.0 -0.808286 -0.284634 500.0 -1.815703 1.347213 750.0 -0.243487 0.514704 1000.0 1.162969 -0.287725 1000.4 -0.179734 0.993962 In [188]: dfir.loc[0:1001, "A"] Out[188]: 0.0 -0.435772 250.0 -0.808286 500.0 -1.815703 750.0 -0.243487 1000.0 1.162969 1000.4 -0.179734 Name: A, dtype: float64 In [189]: dfir.loc[1000.4] Out[189]: A -0.179734 B 0.993962 Name: 1000.4, dtype: float64
You could retrieve the first 1 second (1000 ms) of data as such:
In [190]: dfir[0:1000] Out[190]: A B 0.0 -0.435772 -1.188928 250.0 -0.808286 -0.284634 500.0 -1.815703 1.347213 750.0 -0.243487 0.514704 1000.0 1.162969 -0.287725
If you need integer based selection, you should use iloc
:
In [191]: dfir.iloc[0:5] Out[191]: A B 0.0 -0.435772 -1.188928 250.0 -0.808286 -0.284634 500.0 -1.815703 1.347213 750.0 -0.243487 0.514704 1000.0 1.162969 -0.287725
IntervalIndex together with its own dtype, IntervalDtype
as well as the Interval scalar type, allow first-class support in pandas for interval notation.
The IntervalIndex
allows some unique indexing and is also used as a return type for the categories in cut() and qcut().
Indexing with an IntervalIndex
An IntervalIndex
can be used in Series
and in DataFrame
as the index.
In [192]: df = pd.DataFrame( .....: {"A": [1, 2, 3, 4]}, index=pd.IntervalIndex.from_breaks([0, 1, 2, 3, 4]) .....: ) .....: In [193]: df Out[193]: A (0, 1] 1 (1, 2] 2 (2, 3] 3 (3, 4] 4
Label based indexing via .loc
along the edges of an interval works as you would expect, selecting that particular interval.
In [194]: df.loc[2] Out[194]: A 2 Name: (1, 2], dtype: int64 In [195]: df.loc[[2, 3]] Out[195]: A (1, 2] 2 (2, 3] 3
If you select a label contained within an interval, this will also select the interval.
In [196]: df.loc[2.5] Out[196]: A 3 Name: (2, 3], dtype: int64 In [197]: df.loc[[2.5, 3.5]] Out[197]: A (2, 3] 3 (3, 4] 4
Selecting using an Interval
will only return exact matches (starting from pandas 0.25.0).
In [198]: df.loc[pd.Interval(1, 2)] Out[198]: A 2 Name: (1, 2], dtype: int64
Trying to select an Interval
that is not exactly contained in the IntervalIndex
will raise a KeyError
.
In [7]: df.loc[pd.Interval(0.5, 2.5)] --------------------------------------------------------------------------- KeyError: Interval(0.5, 2.5, closed='right')
Selecting all Intervals
that overlap a given Interval
can be performed using the overlaps() method to create a boolean indexer.
In [199]: idxr = df.index.overlaps(pd.Interval(0.5, 2.5)) In [200]: idxr Out[200]: array([ True, True, True, False]) In [201]: df[idxr] Out[201]: A (0, 1] 1 (1, 2] 2 (2, 3] 3
Binning data with cut
and qcut
cut() and qcut() both return a Categorical
object, and the bins they create are stored as an IntervalIndex
in its .categories
attribute.
In [202]: c = pd.cut(range(4), bins=2) In [203]: c Out[203]: [(-0.003, 1.5], (-0.003, 1.5], (1.5, 3.0], (1.5, 3.0]] Categories (2, interval[float64, right]): [(-0.003, 1.5] < (1.5, 3.0]] In [204]: c.categories Out[204]: IntervalIndex([(-0.003, 1.5], (1.5, 3.0]], dtype='interval[float64, right]')
cut() also accepts an IntervalIndex
for its bins
argument, which enables a useful pandas idiom. First, We call cut() with some data and bins
set to a fixed number, to generate the bins. Then, we pass the values of .categories
as the bins
argument in subsequent calls to cut(), supplying new data which will be binned into the same bins.
In [205]: pd.cut([0, 3, 5, 1], bins=c.categories) Out[205]: [(-0.003, 1.5], (1.5, 3.0], NaN, (-0.003, 1.5]] Categories (2, interval[float64, right]): [(-0.003, 1.5] < (1.5, 3.0]]
Any value which falls outside all bins will be assigned a NaN
value.
Generating ranges of intervals
If we need intervals on a regular frequency, we can use the interval_range() function to create an IntervalIndex
using various combinations of start
, end
, and periods
. The default frequency for interval_range
is a 1 for numeric intervals, and calendar day for datetime-like intervals:
In [206]: pd.interval_range(start=0, end=5) Out[206]: IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], dtype='interval[int64, right]') In [207]: pd.interval_range(start=pd.Timestamp("2017-01-01"), periods=4) Out[207]: IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04], (2017-01-04, 2017-01-05]], dtype='interval[datetime64[ns], right]') In [208]: pd.interval_range(end=pd.Timedelta("3 days"), periods=3) Out[208]: IntervalIndex([(0 days 00:00:00, 1 days 00:00:00], (1 days 00:00:00, 2 days 00:00:00], (2 days 00:00:00, 3 days 00:00:00]], dtype='interval[timedelta64[ns], right]')
The freq
parameter can used to specify non-default frequencies, and can utilize a variety of frequency aliases with datetime-like intervals:
In [209]: pd.interval_range(start=0, periods=5, freq=1.5) Out[209]: IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0], (6.0, 7.5]], dtype='interval[float64, right]') In [210]: pd.interval_range(start=pd.Timestamp("2017-01-01"), periods=4, freq="W") Out[210]: IntervalIndex([(2017-01-01, 2017-01-08], (2017-01-08, 2017-01-15], (2017-01-15, 2017-01-22], (2017-01-22, 2017-01-29]], dtype='interval[datetime64[ns], right]') In [211]: pd.interval_range(start=pd.Timedelta("0 days"), periods=3, freq="9H") Out[211]: IntervalIndex([(0 days 00:00:00, 0 days 09:00:00], (0 days 09:00:00, 0 days 18:00:00], (0 days 18:00:00, 1 days 03:00:00]], dtype='interval[timedelta64[ns], right]')
Additionally, the closed
parameter can be used to specify which side(s) the intervals are closed on. Intervals are closed on the right side by default.
In [212]: pd.interval_range(start=0, end=4, closed="both") Out[212]: IntervalIndex([[0, 1], [1, 2], [2, 3], [3, 4]], dtype='interval[int64, both]') In [213]: pd.interval_range(start=0, end=4, closed="neither") Out[213]: IntervalIndex([(0, 1), (1, 2), (2, 3), (3, 4)], dtype='interval[int64, neither]')
Specifying start
, end
, and periods
will generate a range of evenly spaced intervals from start
to end
inclusively, with periods
number of elements in the resulting IntervalIndex
:
In [214]: pd.interval_range(start=0, end=6, periods=4) Out[214]: IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], dtype='interval[float64, right]') In [215]: pd.interval_range(pd.Timestamp("2018-01-01"), pd.Timestamp("2018-02-28"), periods=3) Out[215]: IntervalIndex([(2018-01-01, 2018-01-20 08:00:00], (2018-01-20 08:00:00, 2018-02-08 16:00:00], (2018-02-08 16:00:00, 2018-02-28]], dtype='interval[datetime64[ns], right]')
Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the standard tools like .loc
. The following code will generate exceptions:
In [216]: s = pd.Series(range(5)) In [217]: s[-1] --------------------------------------------------------------------------- ValueError Traceback (most recent call last) File /pandas/pandas/core/indexes/range.py:385, in RangeIndex.get_loc(self, key, method, tolerance) 384 try: --> 385 return self._range.index(new_key) 386 except ValueError as err: ValueError: -1 is not in range The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) Input In [217], in <module> ----> 1 s[-1] File /pandas/pandas/core/series.py:958, in Series.__getitem__(self, key) 955 return self._values[key] 957 elif key_is_scalar: --> 958 return self._get_value(key) 960 if is_hashable(key): 961 # Otherwise index.get_value will raise InvalidIndexError 962 try: 963 # For labels that don't resolve as scalars like tuples and frozensets File /pandas/pandas/core/series.py:1069, in Series._get_value(self, label, takeable) 1066 return self._values[label] 1068 # Similar to Index.get_value, but we do not fall back to positional -> 1069 loc = self.index.get_loc(label) 1070 return self.index._get_values_for_loc(self, loc, label) File /pandas/pandas/core/indexes/range.py:387, in RangeIndex.get_loc(self, key, method, tolerance) 385 return self._range.index(new_key) 386 except ValueError as err: --> 387 raise KeyError(key) from err 388 self._check_indexing_error(key) 389 raise KeyError(key) KeyError: -1 In [218]: df = pd.DataFrame(np.random.randn(5, 4)) In [219]: df Out[219]: 0 1 2 3 0 -0.130121 -0.476046 0.759104 0.213379 1 -0.082641 0.448008 0.656420 -1.051443 2 0.594956 -0.151360 -0.069303 1.221431 3 -0.182832 0.791235 0.042745 2.069775 4 1.446552 0.019814 -1.389212 -0.702312 In [220]: df.loc[-2:] Out[220]: 0 1 2 3 0 -0.130121 -0.476046 0.759104 0.213379 1 -0.082641 0.448008 0.656420 -1.051443 2 0.594956 -0.151360 -0.069303 1.221431 3 -0.182832 0.791235 0.042745 2.069775 4 1.446552 0.019814 -1.389212 -0.702312
This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the API change was made to stop “falling back” on position-based indexing).
If the index of a Series
or DataFrame
is monotonically increasing or decreasing, then the bounds of a label-based slice can be outside the range of the index, much like slice indexing a normal Python list
. Monotonicity of an index can be tested with the is_monotonic_increasing() and is_monotonic_decreasing() attributes.
In [221]: df = pd.DataFrame(index=[2, 3, 3, 4, 5], columns=["data"], data=list(range(5))) In [222]: df.index.is_monotonic_increasing Out[222]: True # no rows 0 or 1, but still returns rows 2, 3 (both of them), and 4: In [223]: df.loc[0:4, :] Out[223]: data 2 0 3 1 3 2 4 3 # slice is are outside the index, so empty DataFrame is returned In [224]: df.loc[13:15, :] Out[224]: Empty DataFrame Columns: [data] Index: []
On the other hand, if the index is not monotonic, then both slice bounds must be unique members of the index.
In [225]: df = pd.DataFrame(index=[2, 3, 1, 4, 3, 5], columns=["data"], data=list(range(6))) In [226]: df.index.is_monotonic_increasing Out[226]: False # OK because 2 and 4 are in the index In [227]: df.loc[2:4, :] Out[227]: data 2 0 3 1 1 2 4 3 # 0 is not in the index In [9]: df.loc[0:4, :] KeyError: 0 # 3 is not a unique label In [11]: df.loc[2:3, :] KeyError: 'Cannot get right slice bound for non-unique label: 3'
Index.is_monotonic_increasing
and Index.is_monotonic_decreasing
only check that an index is weakly monotonic. To check for strict monotonicity, you can combine one of those with the is_unique() attribute.
In [228]: weakly_monotonic = pd.Index(["a", "b", "c", "c"]) In [229]: weakly_monotonic Out[229]: Index(['a', 'b', 'c', 'c'], dtype='object') In [230]: weakly_monotonic.is_monotonic_increasing Out[230]: True In [231]: weakly_monotonic.is_monotonic_increasing & weakly_monotonic.is_unique Out[231]: False
Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in pandas is inclusive. The primary reason for this is that it is often not possible to easily determine the “successor” or next element after a particular label in an index. For example, consider the following Series
:
In [232]: s = pd.Series(np.random.randn(6), index=list("abcdef")) In [233]: s Out[233]: a 0.301379 b 1.240445 c -0.846068 d -0.043312 e -1.658747 f -0.819549 dtype: float64
Suppose we wished to slice from c
to e
, using integers this would be accomplished as such:
In [234]: s[2:5] Out[234]: c -0.846068 d -0.043312 e -1.658747 dtype: float64
However, if you only had c
and e
, determining the next element in the index can be somewhat complicated. For example, the following does not work:
s.loc['c':'e' + 1]
A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the design choice to make label-based slicing include both endpoints:
In [235]: s.loc["c":"e"] Out[235]: c -0.846068 d -0.043312 e -1.658747 dtype: float64
This is most definitely a “practicality beats purity” sort of thing, but it is something to watch out for if you expect label-based slicing to behave exactly in the way that standard Python integer slicing works.
The different indexing operation can potentially change the dtype of a Series
.
In [236]: series1 = pd.Series([1, 2, 3]) In [237]: series1.dtype Out[237]: dtype('int64') In [238]: res = series1.reindex([0, 4]) In [239]: res.dtype Out[239]: dtype('float64') In [240]: res Out[240]: 0 1.0 4 NaN dtype: float64 In [241]: series2 = pd.Series([True]) In [242]: series2.dtype Out[242]: dtype('bool') In [243]: res = series2.reindex_like(series1) In [244]: res.dtype Out[244]: dtype('O') In [245]: res Out[245]: 0 True 1 NaN 2 NaN dtype: object
This is because the (re)indexing operations above silently inserts NaNs
and the dtype
changes accordingly. This can cause some issues when using numpy
ufuncs
such as numpy.logical_and
.
See the GH2388 for a more detailed discussion.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。