当前位置:   article > 正文

二叉树的链式与顺序存储的实现_按层序次序输入二叉树中结点的值(字符型或整型),构造顺序存储的二叉树t结果

按层序次序输入二叉树中结点的值(字符型或整型),构造顺序存储的二叉树t结果

二叉树的链式存储

结点结构
typedef char CElemType;
typedef struct BiTNode  /* 结点结构 */
{
    CElemType data;        /* 结点数据 */
    struct BiTNode *lchild,*rchild; /* 左右孩子指针 */
}BiTNode,*BiTree;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
访问结点的函数
//具体你想干啥,这儿只做了打印的操作
Status visit(CElemType e)
{
    printf("%c ",e);
    return OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
构建空二叉树
/*  构造空二叉树T */
Status InitBiTree(BiTree *T)
{
    *T=NULL;
    return OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
创建二叉树
// 创建一棵二叉树  约定用户遵照前序遍历的方式输入数据
void CreateBiTree(BiTree *T){
    char c;
    scanf("%c", &c);
    if('#' == c){
        *T = NULL;
    }else{
        *T = (BiTNode *)malloc(sizeof(BiTNode));//malloc 返回的是地址 必须转一下让返回BiBNode类型的地址
        if (!*T) {
            exit(OVERFLOW);
        }
        (*T)->data = c;
        CreateBiTree(&(*T)->lchild);
        CreateBiTree(&(*T)->rchild);
        
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
销毁二叉树
/* 销毁二叉树
 初始条件: 二叉树T存在。
 操作结果: 销毁二叉树T
 */
void DestroyBiTree(BiTree *T)
{
    if(*T)
    {
        /* 有左孩子 */
        if((*T)->lchild)
            DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
        
        /* 有右孩子 */
        if((*T)->rchild)
            DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
        
        free(*T); /* 释放根结点 */
        
        *T=NULL; /* 空指针赋0 */
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
二叉树的深度
/*
 二叉树T的深度
 初始条件: 二叉树T存在
 操作结果: 返回T的深度
 */
int BiTreeDepth(BiTree T){
    
    int i,j;
    if(!T)
        return 0;
    
    //计算左孩子的深度
    if(T->lchild)
        i=BiTreeDepth(T->lchild);
    else
        i=0;
    
    //计算右孩子的深度
    if(T->rchild)
        j=BiTreeDepth(T->rchild);
    else
        j=0;
    
    //比较i和j
    return i>j?i+1:j+1;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
前序遍历二叉树
/*
 前序递归遍历T
 初始条件:二叉树T存在;
 操作结果: 前序递归遍历T
 */

void PreOrderTraverse(BiTree T)
{
    if(T==NULL)
        return;
    visit(T->data);/* 显示结点数据,可以更改为其它对结点操作 */
    PreOrderTraverse(T->lchild); /* 再先序遍历左子树 */
    PreOrderTraverse(T->rchild); /* 最后先序遍历右子树 */
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
中序遍历
/*
 中序递归遍历T
 初始条件:二叉树T存在;
 操作结果: 中序递归遍历T
 */
void InOrderTraverse(BiTree T)
{
    if(T==NULL)
        return ;
    InOrderTraverse(T->lchild); /* 中序遍历左子树 */
    visit(T->data);/* 显示结点数据,可以更改为其它对结点操作 */
    InOrderTraverse(T->rchild); /* 最后中序遍历右子树 */
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
后序遍历
/*
 后序递归遍历T
 初始条件:二叉树T存在;
 操作结果: 中序递归遍历T
 */
void PostOrderTraverse(BiTree T)
{
    if(T==NULL)
        return;
    PostOrderTraverse(T->lchild); /* 先后序遍历左子树  */
    PostOrderTraverse(T->rchild); /* 再后序遍历右子树  */
    visit(T->data);/* 显示结点数据,可以更改为其它对结点操作 */
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

二叉树的顺序存储

存储结构及位置结点的结构体
#define MAXSIZE 100 /* 存储空间初始分配量 */
#define MAX_TREE_SIZE 100 /* 二叉树的最大结点数 */

typedef int Status;        /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int CElemType;      /* 树结点的数据类型,目前暂定为整型 */
typedef CElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点  */
CElemType Nil = 0;   /*设整型以0为空 或者以 INT_MAX(65535)*/

typedef struct {
    int level; //结点层
    int order; //本层的序号(按照满二叉树给定序号规则)
}Position;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
结点访问函数
Status visit(CElemType c){
    printf("%d ",c);
    return OK;
}
  • 1
  • 2
  • 3
  • 4
构造空二叉树
//   构造空二叉树T,因为T是固定数组,不会改变.
Status InitBiTree(SqBiTree T){
    
    for (int i = 0; i < MAX_TREE_SIZE; i++) {
        //将二叉树初始化值置空
        T[i] = Nil;
    }
    
    return OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
构造二叉树
// 按层序次序输入二叉树中的结点值(字符型或整型),构造顺序存储的二叉树T
Status CreateBiTree(SqBiTree T){
    int i = 0;
    
    //printf("按层序输入结点的值(整型),0表示空结点, 输入999结束.结点数<=%d\n",MAX_TREE_SIZE);
    /*
     1      -->1
     2     3   -->2
     4  5  6   7 -->3
     8  9 10       -->4
     
     1 2 3 4 5 6 7 8 9 10 Nil Nil Nil
     */
    
    while (i < 10) {
        T[i] = i+1;
        printf("%d ",T[i]);
        
        //结点不为空,且无双亲结点
        if (i != 0 && T[(i+1)/2-1] == Nil && T[i] != Nil) {
            printf("出现无双亲的非根结点%d\n",T[i]);
            exit(ERROR);
        }
        
        i++;
        
    }
    
    //将空赋值给T的后面的结点
    while (i < MAX_TREE_SIZE) {
        T[i] = Nil;
        i++;
    }
    
    return OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
二叉树深度
/* 获取二叉树的深度
 初始条件: 二叉树已存在
 操作结果: 返回二叉树T深度;
 */
int BiTreeDepth(SqBiTree T){
    
    int j = -1;
    int i;
    
    //找到最后一个结点
    //MAX_TREE_SIZE -> 100 -> 10 目的找到最后一个结点10的位置
    for (i = MAX_TREE_SIZE-1 ; i>=0; i--) {
        if (T[i] != Nil)
            break;
    }
    
    do {
        j++;
    } while ( powl(2, j) <= i); //计算2的次幂
    
    return j;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
访问结点
/*返回处于位置e(层,本层序号)的结点值
 初始条件: 二叉树T存在,e是T中某个结点(的位置)
 操作结构: 返回处于位置e(层,本层序号)的结点值
 */
CElemType Value(SqBiTree T,Position e){
    
    /*
     Position.level -> 结点层.表示第几层;
     Position.order -> 本层的序号(按照满二叉树给定序号规则)
     */
    
    //pow(2,e.level-1) 找到层序
    printf("%d\n",(int)pow(2,e.level-1));
    
    //e.order
    printf("%d\n",e.order);
    
    //4+2-2;
    return T[(int)pow(2, e.level-1)+e.order-2];
    
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
赋值
/*
 给处于位置e的结点赋值
 初始条件: 二叉树存在,e是T中某个结点的位置
 操作结果: 给处于位置e的结点赋值Value;
 */
Status Assign(SqBiTree T,Position e,CElemType value){
    
    //找到当前e在数组中的具体位置索引
    int i = (int)powl(2, e.level-1)+e.order -2;
    
    //叶子结点的双亲为空
    if (value != Nil &&  T[(i+1)/2-1] == Nil) {
        return ERROR;
    }
    
    //给双亲赋空值但是有叶子结点
    if (value == Nil && (T[i*2+1] != Nil || T[i*2+2] != Nil)) {
        return  ERROR;
    }
    
    T[i] = value;
    return OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
层序遍历二叉树
void LevelOrderTraverse(SqBiTree T){
    
    int i = MAX_TREE_SIZE-1;
    
    //找到最后一个非空结点的序号
    while (T[i] == Nil) i--;
    
    //从根结点起,按层序遍历二叉树
    for (int j = 0; j <= i; j++)
        //只遍历非空结点
        if (T[j] != Nil)
            visit(T[j]);
    
    printf("\n");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
前序遍历二叉树
void PreTraverse(SqBiTree T,int e){
    
    //打印结点数据
    visit(T[e]);
    
    //先序遍历左子树
    if (T[2 * e + 1] != Nil) {
        PreTraverse(T, 2*e+1);
    }
    //最后先序遍历右子树
    if (T[2 * e + 2] != Nil) {
        PreTraverse(T, 2*e+2);
    }
}
Status PreOrderTraverse(SqBiTree T){
    
    //树不为空
    if (!BiTreeEmpty(T)) {
        PreTraverse(T, 0);
    }
    printf("\n");
    return  OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
中序遍历
void InTraverse(SqBiTree T, int e){
    
    /* 左子树不空 */
    if (T[2*e+1] != Nil)
        InTraverse(T, 2*e+1);
    
    visit(T[e]);
    
    /* 右子树不空 */
    if (T[2*e+2] != Nil)
        InTraverse(T, 2*e+2);
}

Status InOrderTraverse(SqBiTree T){
    
    /* 树不空 */
    if (!BiTreeEmpty(T)) {
        InTraverse(T, 0);
    }
    printf("\n");
    return OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
后序遍历
void PostTraverse(SqBiTree T,int e)
{   /* 左子树不空 */
    if(T[2*e+1]!=Nil)
        PostTraverse(T,2*e+1);
    /* 右子树不空 */
    if(T[2*e+2]!=Nil)
        PostTraverse(T,2*e+2);
    
    visit(T[e]);
}
Status PostOrderTraverse(SqBiTree T)
{
    if(!BiTreeEmpty(T)) /* 树不空 */
        PostTraverse(T,0);
    printf("\n");
    return OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/232991
推荐阅读
相关标签
  

闽ICP备14008679号