赞
踩
https://zhuanlan.zhihu.com/p/261750408
$$
y = a+bx
$$
y = a + b x (1) y = a+bx \tag 1 y=a+bx(1)
$$
y = a + b_{ij}^2
$$
y = a + b i j 2 (2) y = a + b_{ij}^2\tag 2 y=a+bij2(2)
$$
\sum_{i=0}^n(x_i^2+y_j^3)
$$
∑ i = 0 n ( x i 2 + y j 3 ) (3) \sum_{i=0}^n(x_i^2+y_j^3)\tag 3 i=0∑n(xi2+yj3)(3)
$$
\frac{1}{3}-\frac{x_i^2}{y_j^3}
$$
或者
$$
\cfrac{1}{3}-\cfrac{x_i^2}{y_j^3}
$$
1 3 − x i 2 y j 3 1 3 − x i 2 y j 3 (4) \frac{1}{3}-\frac{x_i^2}{y_j^3} \\ \cfrac{1}{3}-\cfrac{x_i^2}{y_j^3} \tag 4 31−yj3xi231−yj3xi2(4)
$$
\left[
\begin{array} {cccc}
X_1&Y_1^2\\
X_2 & Y_2^2\\
\ldots \\
X_n & Y_n^2
\end{array}
\right]
$$
[
X
1
Y
1
2
X
2
Y
2
2
…
X
n
Y
n
2
]
(5)
\left[
注意大小写的首字母是区分大小写的关键
小写 | 大写 | Latex小写命令 | Latex大写命令 |
---|---|---|---|
α \alpha α | A \Alpha A | \alpha | \Alpha |
β \beta β | B \Beta B | \beta | \Beta |
γ \gamma γ | Γ \Gamma Γ | \gamma | \Gamma |
δ \delta δ | Δ \Delta Δ | \delta | \Delta |
ϵ \epsilon ϵ | E \Epsilon E | \epsilon | \Epsilon |
ζ \zeta ζ | Z \Zeta Z | \zeta | \Zeta |
ν \nu ν | N \Nu N | \nu | \Nu |
ξ \xi ξ | Ξ \Xi Ξ | \xi | \Xi |
ο \omicron ο | O \Omicron O | \omicron | \Omicron |
π \pi π | Π \Pi Π | \pi | \Pi |
ρ \rho ρ | P \Rho P | \rho | \Rho |
σ \sigma σ | Σ \Sigma Σ | \sigma | \Sigma |
η \eta η | H \Eta H | \eta | \Eta |
θ \theta θ | Θ \Theta Θ | \theta | \Theta |
ι \iota ι | I \Iota I | \iota | \Iota |
κ \kappa κ | K \Kappa K | \kappa | \Kappa |
λ \lambda λ | Λ \Lambda Λ | \lambda | \Lambda |
μ \mu μ | M \Mu M | \mu | \Mu |
τ \tau τ | T \Tau T | \tau | \Tau |
υ \upsilon υ | Υ \Upsilon Υ | \upsilon | \Upsilon |
ϕ \phi ϕ | ϕ \phi ϕ | \phi | \phi |
χ \chi χ | X \Chi X | \chi | \Chi |
ψ \psi ψ | Ψ \Psi Ψ | \psi | \Psi |
ω \omega ω | Ω \Omega Ω | \omega | \Omega |
-- \ldots 与底线对齐的省略号,\cdots 与中线对齐省略号
-- 换行 "\\"
$$
f(x_1,x_2,\ldots,x_i) = x_1+x_2+\cdots+x_i
$$
f ( x 1 , x 2 , … , x i ) = x 1 + x 2 + ⋯ + x i (6) f(x_1,x_2,\ldots,x_i) = x_1+x_2+\cdots+x_i \tag 6 f(x1,x2,…,xi)=x1+x2+⋯+xi(6)
f ( x 1 , x 2 , … , x i ) = x 1 + x 2 + ⋯ + x i (7) f(x_1,x_2,\ldots,x_i) \\ = x_1+x_2+\cdots+x_i \tag 7 f(x1,x2,…,xi)=x1+x2+⋯+xi(7)
" \{ \}"" (注意这里直接{}打是不行的,显示不出来的)
$$
\{a+b\}
$$
{ a + b } (8) \{a+b\} \tag 8 {a+b}(8)
* "\left( \right)"
* "\left[ \right]"
$$
\left(a+b^2+(c*r)\right)
$$
或者
$$
\left[a+b^2+(x*r)\right]
$$
( a + b 2 + ( c ∗ r ) ) [ a + b 2 + ( x ∗ r ) ] (9) \left(a+b^2+(c*r)\right) \\ \left[a+b^2+(x*r)\right] \tag 9 (a+b2+(c∗r))[a+b2+(x∗r)](9)
$$ \begin{aligned} \cos 2 \theta & = & \cos^2 \theta - \sin^2 \theta\\ &=& 2\cos^2 \theta - 1 \end{aligned} $$ 或者 $$ \begin{aligned} \cos 2 \theta & = & \cos^2 \theta - \sin^2 \theta\\ &=& 2\cos^2 \theta - 1 \end{aligned} $$
cos
2
θ
=
cos
2
θ
−
sin
2
θ
=
2
cos
2
θ
−
1
(10)
cos
2
θ
=
cos
2
θ
−
sin
2
θ
=
2
cos
2
θ
−
1
(11)
$$
f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty(a_n \cos {nx} + b_n \sin {nx})
$$
或者
$$
\{ f(x) = {{{a_0}} \over 2} + \sum\limits_{n = 1}^\infty {({a_n}\cos {nx} + {b_n}\sin {nx})} \}
$$
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) { f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) } (12) f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty(a_n \cos {nx} + b_n \sin {nx}) \\ \{ f(x) = {{{a_0}} \over 2} + \sum\limits_{n = 1}^\infty {({a_n}\cos {nx} + {b_n}\sin {nx})} \} \tag {12} f(x)=2a0+n=1∑∞(ancosnx+bnsinnx){f(x)=2a0+n=1∑∞(ancosnx+bnsinnx)}(12)
$$
\iiint _ { \Omega } \left( \frac { \partial {P} } { \partial {x} } + \frac { \partial {Q} } { \partial {y} } + \frac { \partial {R} }{ \partial {z} } \right) \mathrm { d } V = \oint _ { \partial \Omega } ( P \cos \alpha + Q \cos \beta + R \cos \gamma ) \mathrm{ d} S
$$
∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V = ∮ ∂ Ω ( P cos α + Q cos β + R cos γ ) d S (13) \iiint _ { \Omega } \left( \frac { \partial {P} } { \partial {x} } + \frac { \partial {Q} } { \partial {y} } + \frac { \partial {R} }{ \partial {z} } \right) \mathrm { d } V = \oint _ { \partial \Omega } ( P \cos \alpha + Q \cos \beta + R \cos \gamma ) \mathrm{ d} S \tag {13} ∭Ω(∂x∂P+∂y∂Q+∂z∂R)dV=∮∂Ω(Pcosα+Qcosβ+Rcosγ)dS(13)
$$
\lim\limits_ { n \rightarrow + \infty } \sum _ { i = 1 } ^ { n } f \left[ a + \frac { i } { n } ( b - a ) \right] \frac { b - a } { n } = \int _ { a } ^ { b } f ( x )\mathrm {d}x
$$
lim n → + ∞ ∑ i = 1 n f [ a + i n ( b − a ) ] b − a n = ∫ a b f ( x ) d x (14) \lim\limits_ { n \rightarrow + \infty } \sum _ { i = 1 } ^ { n } f \left[ a + \frac { i } { n } ( b - a ) \right] \frac { b - a } { n } = \int _ { a } ^ { b } f ( x )\mathrm {d}x \tag {14} n→+∞limi=1∑nf[a+ni(b−a)]nb−a=∫abf(x)dx(14)
$$
( 1 + x ) ^ { n } = 1 + \frac { n x } { 1 ! } + \frac { n ( n - 1 ) x ^ { 2 } } { 2 ! } + \cdots
$$
( 1 + x ) n = 1 + n x 1 ! + n ( n − 1 ) x 2 2 ! + ⋯ (15) ( 1 + x ) ^ { n } = 1 + \frac { n x } { 1 ! } + \frac { n ( n - 1 ) x ^ { 2 } } { 2 ! } + \cdots \tag {15} (1+x)n=1+1!nx+2!n(n−1)x2+⋯(15)
$$
\sin \alpha \pm \sin \beta = 2 \sin \frac { 1 } { 2 } ( \alpha \pm \beta ) \cos \frac { 1 } { 2 } ( \alpha \mp \beta )
$$
$$
\cos \alpha + \cos \beta = 2 \cos \frac { 1 } { 2 } ( \alpha + \beta ) \cos \frac { 1 } { 2 } ( \alpha - \beta )
$$
sin α ± sin β = 2 sin 1 2 ( α ± β ) cos 1 2 ( α ∓ β ) cos α + cos β = 2 cos 1 2 ( α + β ) cos 1 2 ( α − β ) (16) \sin \alpha \pm \sin \beta = 2 \sin \frac { 1 } { 2 } ( \alpha \pm \beta ) \cos \frac { 1 } { 2 } ( \alpha \mp \beta ) \\ \cos \alpha + \cos \beta = 2 \cos \frac { 1 } { 2 } ( \alpha + \beta ) \cos \frac { 1 } { 2 } ( \alpha - \beta ) \tag {16} sinα±sinβ=2sin21(α±β)cos21(α∓β)cosα+cosβ=2cos21(α+β)cos21(α−β)(16)
$$
{e^{ix}} = \cos {x} + i\sin {x}
$$
e i x = cos x + i sin x (17) {e^{ix}} = \cos {x} + i\sin {x} \tag {17} eix=cosx+isinx(17)
$$
\int\!\!\!\int\limits_D {({{\partial Q} \over {\partial x}} - {{\partial P} \over {\partial y}})dxdy = \oint\limits_L {Pdx + Qdy} }
$$
∫ ∫ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ L P d x + Q d y (18) \int\!\!\!\int\limits_D {({{\partial Q} \over {\partial x}} - {{\partial P} \over {\partial y}})dxdy = \oint\limits_L {Pdx + Qdy} } \tag {18} ∫D∫(∂x∂Q−∂y∂P)dxdy=L∮Pdx+Qdy(18)
$$
{{dy} \over {dx}} + P(x)y = Q(x){y^n}(n \ne 0,1)
$$
d y d x + P ( x ) y = Q ( x ) y n ( n ≠ 0 , 1 ) (19) {{dy} \over {dx}} + P(x)y = Q(x){y^n}(n \ne 0,1) \tag {19} dxdy+P(x)y=Q(x)yn(n=0,1)(19)
$$
du(x,y) = P(x,y)dx + Q(x,y)dy = 0
$$
d u ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y = 0 (20) du(x,y) = P(x,y)dx + Q(x,y)dy = 0 \tag {20} du(x,y)=P(x,y)dx+Q(x,y)dy=0(20)
$$
y = (\int {Q(x){e^{\int {P(x)dx} }}dx + C){e^{ - \int {P(x)dx} }}}
$$
y = ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) e − ∫ P ( x ) d x (21) y = (\int {Q(x){e^{\int {P(x)dx} }}dx + C){e^{ - \int {P(x)dx} }}} \tag {21} y=(∫Q(x)e∫P(x)dxdx+C)e−∫P(x)dx(21)
$$
\frac{{f(b) - f(a)}}{{F(b) - F(a)}} = \frac{{f'(\xi )}}{{F'(\xi )}}
$$
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) (22) \frac{{f(b) - f(a)}}{{F(b) - F(a)}} = \frac{{f'(\xi )}}{{F'(\xi )}} \tag {22} F(b)−F(a)f(b)−f(a)=F′(ξ)f′(ξ)(22)
$$
f(b) - f(a) = f'(\xi )(b - a)
$$
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) (23) f(b) - f(a) = f'(\xi )(b - a) \tag{23} f(b)−f(a)=f′(ξ)(b−a)(23)
$$
A = \int\!\!\!\int\limits_D {\sqrt {1 + {{\left( {{{\partial z} \over {\partial x}}} \right)}^2} + {{\left( {{{\partial z} \over {\partial y}}} \right)}^2}} dxdy}
$$
A = ∫ ∫ D 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y (24) A = \int\!\!\!\int\limits_D {\sqrt {1 + {{\left( {{{\partial z} \over {\partial x}}} \right)}^2} + {{\left( {{{\partial z} \over {\partial y}}} \right)}^2}} dxdy} \tag{24} A=∫D∫1+(∂x∂z)2+(∂y∂z)2 dxdy(24)
$$
\int\!\!\!\int\limits_D {f(x,y)dxdy} = \int\!\!\!\int\limits_{D'} {f(r\cos \theta ,r\sin \theta )rdrd\theta }
$$
∫ ∫ D f ( x , y ) d x d y = ∫ ∫ D ′ f ( r cos θ , r sin θ ) r d r d θ (25) \int\!\!\!\int\limits_D {f(x,y)dxdy} = \int\!\!\!\int\limits_{D'} {f(r\cos \theta ,r\sin \theta )rdrd\theta } \tag{25} ∫D∫f(x,y)dxdy=∫D′∫f(rcosθ,rsinθ)rdrdθ(25)
$$
(\arcsin x)' = \frac{1}{{\sqrt {1 - {x^2}} }}
$$
( arcsin x ) ′ = 1 1 − x 2 (26) (\arcsin x)' = \frac{1}{{\sqrt {1 - {x^2}} }} \tag{26} (arcsinx)′=1−x2 1(26)
$$ p;ko[p';p[oooo]]
e^x = 1 + \frac{x}{1!} + \frac{x}{2!}+ \frac{x}{3!} + \cdots + O(x^n), -\infty < x < \infty
$$
e x = 1 + x 1 ! + x 2 ! + x 3 ! + ⋯ + O ( x n ) , − ∞ < x < ∞ (27) e^x = 1 + \frac{x}{1!} + \frac{x}{2!}+ \frac{x}{3!} + \cdots + O(x^n), -\infty < x < \infty \tag{27} ex=1+1!x+2!x+3!x+⋯+O(xn),−∞<x<∞(27)
$$
\int tgx \mathrm {d} x = -\ln {|\cos x|} + c
$$
∫ t g x d x = − ln ∣ cos x ∣ + c (28) \int tgx \mathrm {d} x = -\ln {|\cos x|} + c \tag {28} ∫tgxdx=−ln∣cosx∣+c(28)
$$
\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1
$$
x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 (29) \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1 \tag{29} a2x2+b2y2−c2z2=1(29)
$$
\frac{d^2y}{dx^2}+P(x)\frac{dy}{dx}+Q(x)y=f(x)
$$
d 2 y d x 2 + P ( x ) d y d x + Q ( x ) y = f ( x ) (30) \frac{d^2y}{dx^2}+P(x)\frac{dy}{dx}+Q(x)y=f(x) \tag{30} dx2d2y+P(x)dxdy+Q(x)y=f(x)(30)
$$
\frac{\partial f}{\partial l}=\frac{\partial f}{\partial x}\cos{\phi}+\frac{\partial f}{\partial y}\sin{\phi}
$$
∂ f ∂ l = ∂ f ∂ x cos ϕ + ∂ f ∂ y sin ϕ (31) \frac{\partial f}{\partial l}=\frac{\partial f}{\partial x}\cos{\phi}+\frac{\partial f}{\partial y}\sin{\phi} \tag{31} ∂l∂f=∂x∂fcosϕ+∂y∂fsinϕ(31)
$$ \begin{aligned} \min {f_1} &= \frac{\sqrt{\frac{1}{n-1}\sum(W_j-\overline{W}^2)}}{\overline{W}} \\ \min{f_2} &= \max\limits_{1<j<n}{T_j} \end{aligned} \\ \operatorname{ s.t. } \left\{ \begin{array}{} x_{ij} &= 1, i = j \\ \sum\limits_{j=1}^n x_{ij}&=1, i \neq j \\ \frac{S_{ij}}{V} &\leq 3\\ x_{ij} & \in \{0,1\} \\ \overline{W} &= \frac{1}{n}\sum\limits_{j=1}^n W_j\\ &(i = 1,2,3,\cdots,m;j=1,2,\cdots,n) \end{array} \right. $$
min
f
1
=
1
n
−
1
∑
(
W
j
−
W
‾
2
)
W
‾
min
f
2
=
max
1
<
j
<
n
T
j
s.t.
{
x
i
j
=
1
,
i
=
j
∑
j
=
1
n
x
i
j
=
1
,
i
≠
j
S
i
j
V
≤
3
x
i
j
∈
{
0
,
1
}
W
‾
=
1
n
∑
j
=
1
n
W
j
(
i
=
1
,
2
,
3
,
⋯
,
m
;
j
=
1
,
2
,
⋯
,
n
)
(32)
$$
\begin{aligned}
\int_{k-1}^k \frac{dx_0^{(1)}(t)}{dt}\mathrm{dt} & \approx - \hat{a}\int_{k-1}^kx_0^{(1)}dt+\int_{k-1}^k\hat b dt
\\
& = \int_{k-1}^k \left[-\hat a x_0 ^ {(1)} (t) + \hat b \right]dt
\end{aligned}
$$
∫
k
−
1
k
d
x
0
(
1
)
(
t
)
d
t
d
t
≈
−
a
^
∫
k
−
1
k
x
0
(
1
)
d
t
+
∫
k
−
1
k
b
^
d
t
=
∫
k
−
1
k
[
−
a
^
x
0
(
1
)
(
t
)
+
b
^
]
d
t
(33)
$$
\left\{
\begin{aligned}
z_1 & = l_{11}x_1 + l_{12}x_2 + \cdots + l_{1p}x_p
\\
z_2 & = l_{21}x_1 + l_{22}x_2 + \cdots + l_{2p}x_p
\\
& \vdots
\\
z_m & = l_{m1}x_1 + l_{m2}x_2 + \cdots + l_{mp}x_p
\end{aligned}
\right.
$$
{
z
1
=
l
11
x
1
+
l
12
x
2
+
⋯
+
l
1
p
x
p
z
2
=
l
21
x
1
+
l
22
x
2
+
⋯
+
l
2
p
x
p
⋮
z
m
=
l
m
1
x
1
+
l
m
2
x
2
+
⋯
+
l
m
p
x
p
(34)
\left\{
$$
x =
x = \left[
\begin{aligned}
x_{11} & x_{12} & \cdots & x_{1p} \\
x_{21} & x_{22} & \cdots & x_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{np} \\
\end{aligned} \right]
=(x_1,x_2,\cdots,x_p)
$$
x
=
x
=
[
x
11
x
12
⋯
x
1
p
x
21
x
22
⋯
x
2
p
⋮
⋮
⋱
⋮
x
n
1
x
n
2
⋯
x
n
p
]
=
(
x
1
,
x
2
,
⋯
,
x
p
)
(35)
x = x = \left[
y
=
f
(
x
)
=
W
T
⋅
x
+
b
=
[
x
1
x
2
⋮
x
n
]
+
b
y = f(x)=W^T\cdot x + b = \left[
χ
A
=
{
1
,
A occurs
,
0
,
A doesn’t occur.
\chi_{A}=\left\{
A
=
(
a
11
⋯
a
1
n
⋮
⋱
⋮
a
m
1
⋯
a
m
n
)
A = \left(
ω ^ i = ∏ j = 1 n a i j n ∑ j = 1 n ∏ j = 1 n a i j n , i ∈ [ 1 , m ] (m为指标数量) \hat{\omega}_i = \frac{\sqrt[n]{\prod\limits_{j=1}^na_{ij}}}{\sum\limits_{j=1}^n\sqrt[n]{\prod\limits_{j=1}^na_{ij}}} , i \in [1,m]\tag{m为指标数量} ω^i=j=1∑nnj=1∏naij nj=1∏naij ,i∈[1,m](m为指标数量)
C R = C I R I = λ m a x − n R I ( n − 1 ) CR = \frac{CI}{RI} = \frac{\lambda_{max} - n}{RI(n-1)} CR=RICI=RI(n−1)λmax−n
B j = − ∑ i = 1 m p i j ln p i j ln m B_j = -\sum\limits_{i=1}^m p_{ij}\frac{\ln{p_{ij}}}{\ln{m}} Bj=−i=1∑mpijlnmlnpij
w j = 1 − B j ∑ j = 1 n ( 1 − B j ) w_{j} = \frac{1-B_j}{\sum\limits_{j=1}^n(1-B_j)} wj=j=1∑n(1−Bj)1−Bj
∑ j = 1 n w j = 1 , j ∈ [ 1 , n ] \sum_{j=1}^n w_j = 1,j \in [1,n] j=1∑nwj=1,j∈[1,n]
ω ‾ = { W 1 w 1 ∑ j = 1 n W j w j , W 2 w 2 ∑ j = 1 n W j w j , ⋯ , W n w n ∑ j = 1 n W j w j } = ( ω 1 , ω 2 , ⋯ , ω n ) \overline{\omega}=\left\{\frac{W_{1} w_{1}}{\sum_{j=1}^{n} W_{j} w_{j}}, \frac{W_{2} w_{2}}{\sum_{j=1}^{n} W_{j} w_{j}}, \cdots, \frac{W_{n} w_{n}}{\sum_{j=1}^{n} W_{j} w_{j}}\right\}=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right) ω={∑j=1nWjwjW1w1,∑j=1nWjwjW2w2,⋯,∑j=1nWjwjWnwn}=(ω1,ω2,⋯,ωn)
s.t. ∑ j = 1 n ω j = 1 ; ω j > 0 \text { s.t. } \sum_{j=1}^{n} \omega_{j}=1 ; \omega_{j}>0 s.t. j=1∑nωj=1;ωj>0
w j ( j = 1 , 2 , ⋯ , n ) w_j(j=1,2,\cdots,n) wj(j=1,2,⋯,n)
X
=
[
x
11
x
12
⋯
x
1
m
x
21
x
22
⋯
x
2
m
⋮
⋮
⋱
⋮
x
n
1
x
n
2
⋯
x
n
m
]
X=\left[
那么,对其标准化的矩阵记为Z,
Z
Z
Z 中的每一个元素:
z
i
j
=
x
i
j
/
∑
i
=
1
n
x
i
j
2
z_{i j}=x_{i j} / \sqrt{\sum_{i=1}^{n} x_{i j}^{2}}
zij=xij/i=1∑nxij2
Z
−
=
(
Z
1
−
,
Z
2
−
,
⋯
,
Z
m
−
)
=
(
min
{
z
11
,
z
21
,
⋯
,
z
n
1
}
,
min
{
z
12
,
z
22
,
⋯
,
z
n
2
}
,
⋯
,
min
{
z
1
m
,
z
2
m
,
⋯
,
z
n
m
}
)
D i + = ∑ j = 1 m ( Z j + − z i j ) 2 D_i^+ = \sqrt{\sum\limits_{j=1}^m(Z_j^+ - z_{ij})^2} Di+=j=1∑m(Zj+−zij)2
S i = D i − D i + + D i − S i ∈ [ 0 , 1 ] S_i = \frac{D_i^-}{D_i^+ + D_i^-} S_i \in [0,1] Si=Di++Di−Di−Si∈[0,1]
S
i
~
=
S
i
∑
i
=
1
n
S
i
~
\tilde{S_i} = \frac{S_i}{\sum\limits_{i=1}^n \tilde{S_i}}
Si~=i=1∑nSi~Si
∑
i
=
1
n
S
i
~
=
1
\sum\limits_{i=1}^n \tilde{S_i} = 1
i=1∑nSi~=1
min f 1 = 1 n − 1 ∑ j = 1 n ( W j − W ‾ ) 2 W ‾ \min {f_1} = \frac{\sqrt{\frac{1}{n-1}\sum \limits _{j=1}^n (W_j - \overline {W})^2}}{\overline {W}} minf1=Wn−11j=1∑n(Wj−W)2
min f 2 = max 1 < j < n T j \min{f_2} = \max\limits _ {1<j<n}{T_j} minf2=1<j<nmaxTj
∫
k
−
1
k
d
x
0
(
1
)
(
t
)
d
t
d
t
≈
−
a
^
∫
k
−
1
k
x
0
(
1
)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。