当前位置:   article > 正文

Latex公式总结_latex数学公式

latex数学公式
(by 亲持红叶)

CATLOG

基础推荐

https://zhuanlan.zhihu.com/p/261750408

一、基础

1.1、一元一次方程

$$
y = a+bx
$$
  • 1
  • 2
  • 3

y = a + b x (1) y = a+bx \tag 1 y=a+bx(1)

1.2 、上下标

$$
y = a + b_{ij}^2
$$
  • 1
  • 2
  • 3

y = a + b i j 2 (2) y = a + b_{ij}^2\tag 2 y=a+bij2(2)

1.3、求和

$$
\sum_{i=0}^n(x_i^2+y_j^3)
$$
  • 1
  • 2
  • 3

∑ i = 0 n ( x i 2 + y j 3 ) (3) \sum_{i=0}^n(x_i^2+y_j^3)\tag 3 i=0n(xi2+yj3)(3)

1.4、分数

$$
\frac{1}{3}-\frac{x_i^2}{y_j^3}
$$

或者

$$
\cfrac{1}{3}-\cfrac{x_i^2}{y_j^3}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

1 3 − x i 2 y j 3 1 3 − x i 2 y j 3 (4) \frac{1}{3}-\frac{x_i^2}{y_j^3} \\ \cfrac{1}{3}-\cfrac{x_i^2}{y_j^3} \tag 4 31yj3xi231yj3xi2(4)

1.5、矩阵

$$
\left[ 
\begin{array} {cccc}
X_1&Y_1^2\\
X_2 & Y_2^2\\
\ldots \\
X_n & Y_n^2
\end{array} 
\right]
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

[ X 1 Y 1 2 X 2 Y 2 2 … X n Y n 2 ] (5) \left[

X1Y12X2Y22XnYn2
\right] \tag 5 X1X2XnY12Y22Yn2 (5)

1.6、希腊字母

注意大小写的首字母是区分大小写的关键

小写大写Latex小写命令Latex大写命令
α \alpha α A \Alpha A\alpha\Alpha
β \beta β B \Beta B\beta\Beta
γ \gamma γ Γ \Gamma Γ\gamma\Gamma
δ \delta δ Δ \Delta Δ\delta\Delta
ϵ \epsilon ϵ E \Epsilon E\epsilon\Epsilon
ζ \zeta ζ Z \Zeta Z\zeta\Zeta
ν \nu ν N \Nu N\nu\Nu
ξ \xi ξ Ξ \Xi Ξ\xi\Xi
ο \omicron ο O \Omicron O\omicron\Omicron
π \pi π Π \Pi Π\pi\Pi
ρ \rho ρ P \Rho P\rho\Rho
σ \sigma σ Σ \Sigma Σ\sigma\Sigma
η \eta η H \Eta H\eta\Eta
θ \theta θ Θ \Theta Θ\theta\Theta
ι \iota ι I \Iota I\iota\Iota
κ \kappa κ K \Kappa K\kappa\Kappa
λ \lambda λ Λ \Lambda Λ\lambda\Lambda
μ \mu μ M \Mu M\mu\Mu
τ \tau τ T \Tau T\tau\Tau
υ \upsilon υ Υ \Upsilon Υ\upsilon\Upsilon
ϕ \phi ϕ ϕ \phi ϕ\phi\phi
χ \chi χ X \Chi X\chi\Chi
ψ \psi ψ Ψ \Psi Ψ\psi\Psi
ω \omega ω Ω \Omega Ω\omega\Omega

1.7、省略号

-- \ldots  与底线对齐的省略号,\cdots 与中线对齐省略号
-- 换行 "\\"

$$
f(x_1,x_2,\ldots,x_i) = x_1+x_2+\cdots+x_i
$$

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

f ( x 1 , x 2 , … , x i ) = x 1 + x 2 + ⋯ + x i (6) f(x_1,x_2,\ldots,x_i) = x_1+x_2+\cdots+x_i \tag 6 f(x1,x2,,xi)=x1+x2++xi(6)

f ( x 1 , x 2 , … , x i ) = x 1 + x 2 + ⋯ + x i (7) f(x_1,x_2,\ldots,x_i) \\ = x_1+x_2+\cdots+x_i \tag 7 f(x1,x2,,xi)=x1+x2++xi(7)

1.8、大括号

" \{  \}""  (注意这里直接{}打是不行的,显示不出来的)

$$
\{a+b\}
$$
  • 1
  • 2
  • 3
  • 4
  • 5

{ a + b } (8) \{a+b\} \tag 8 {a+b}(8)

1.8、大大括号

* "\left(  \right)"
* "\left[  \right]"

$$ 
\left(a+b^2+(c*r)\right) 
$$

或者

$$ 
\left[a+b^2+(x*r)\right] 
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

( a + b 2 + ( c ∗ r ) ) [ a + b 2 + ( x ∗ r ) ] (9) \left(a+b^2+(c*r)\right) \\ \left[a+b^2+(x*r)\right] \tag 9 (a+b2+(cr))[a+b2+(xr)](9)

1.9、多行公式

$$
\begin{aligned}
\cos 2 \theta & = & \cos^2 \theta - \sin^2 \theta\\
&=& 2\cos^2 \theta - 1 
\end{aligned}
$$

或者

$$ 
\begin{aligned}
\cos 2 \theta & = & \cos^2 \theta - \sin^2 \theta\\
&=& 2\cos^2 \theta - 1 
\end{aligned}
$$

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

cos ⁡ 2 θ = cos ⁡ 2 θ − sin ⁡ 2 θ = 2 cos ⁡ 2 θ − 1 (10)

cos2θ=cos2θsin2θ=2cos2θ1
\tag {10} cos2θ==cos2θsin2θ2cos2θ1(10)

cos ⁡ 2 θ = cos ⁡ 2 θ − sin ⁡ 2 θ = 2 cos ⁡ 2 θ − 1 (11)

cos2θ=cos2θsin2θ=2cos2θ1
\tag {11} cos2θ==cos2θsin2θ2cos2θ1(11)


二、数学公式

  • 下面的公式是从wps中套用过来的

2.1、傅里叶级数

$$
f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty(a_n \cos {nx} + b_n \sin {nx}) 
$$

或者

$$
\{ f(x) = {{{a_0}} \over 2} + \sum\limits_{n = 1}^\infty  {({a_n}\cos {nx} + {b_n}\sin {nx})}  \}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) { f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) } (12) f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty(a_n \cos {nx} + b_n \sin {nx}) \\ \{ f(x) = {{{a_0}} \over 2} + \sum\limits_{n = 1}^\infty {({a_n}\cos {nx} + {b_n}\sin {nx})} \} \tag {12} f(x)=2a0+n=1(ancosnx+bnsinnx){f(x)=2a0+n=1(ancosnx+bnsinnx)}(12)

2.2、高斯公式

$$
\iiint _ { \Omega } \left( \frac { \partial {P} } { \partial {x} } + \frac { \partial {Q} } { \partial {y} } + \frac { \partial {R} }{ \partial {z} } \right) \mathrm { d } V = \oint _ { \partial \Omega } ( P \cos \alpha + Q \cos \beta + R \cos \gamma ) \mathrm{ d} S 
$$ 
  • 1
  • 2
  • 3

∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V = ∮ ∂ Ω ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S (13) \iiint _ { \Omega } \left( \frac { \partial {P} } { \partial {x} } + \frac { \partial {Q} } { \partial {y} } + \frac { \partial {R} }{ \partial {z} } \right) \mathrm { d } V = \oint _ { \partial \Omega } ( P \cos \alpha + Q \cos \beta + R \cos \gamma ) \mathrm{ d} S \tag {13} Ω(xP+yQ+zR)dV=Ω(Pcosα+Qcosβ+Rcosγ)dS(13)

2.3、定积分

$$
\lim\limits_ { n \rightarrow + \infty } \sum _ { i = 1 } ^ { n } f \left[ a + \frac { i } { n } ( b - a ) \right] \frac { b - a } { n } = \int _ { a } ^ { b } f ( x )\mathrm {d}x 
$$
  • 1
  • 2
  • 3

lim ⁡ n → + ∞ ∑ i = 1 n f [ a + i n ( b − a ) ] b − a n = ∫ a b f ( x ) d x (14) \lim\limits_ { n \rightarrow + \infty } \sum _ { i = 1 } ^ { n } f \left[ a + \frac { i } { n } ( b - a ) \right] \frac { b - a } { n } = \int _ { a } ^ { b } f ( x )\mathrm {d}x \tag {14} n+limi=1nf[a+ni(ba)]nba=abf(x)dx(14)

2.4、和的展开式

$$  
( 1 + x ) ^ { n } = 1 + \frac { n x } { 1 ! } + \frac { n ( n - 1 ) x ^ { 2 } } { 2 ! } + \cdots   
$$
  • 1
  • 2
  • 3

( 1 + x ) n = 1 + n x 1 ! + n ( n − 1 ) x 2 2 ! + ⋯ (15) ( 1 + x ) ^ { n } = 1 + \frac { n x } { 1 ! } + \frac { n ( n - 1 ) x ^ { 2 } } { 2 ! } + \cdots \tag {15} (1+x)n=1+1!nx+2!n(n1)x2+(15)

2.5、三角恒等式

$$  
\sin \alpha \pm \sin \beta = 2 \sin \frac { 1 } { 2 } ( \alpha \pm \beta ) \cos \frac { 1 } { 2 } ( \alpha \mp \beta )  
$$



$$
\cos \alpha + \cos \beta = 2 \cos \frac { 1 } { 2 } ( \alpha + \beta ) \cos \frac { 1 } { 2 } ( \alpha - \beta ) 
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

sin ⁡ α ± sin ⁡ β = 2 sin ⁡ 1 2 ( α ± β ) cos ⁡ 1 2 ( α ∓ β ) cos ⁡ α + cos ⁡ β = 2 cos ⁡ 1 2 ( α + β ) cos ⁡ 1 2 ( α − β ) (16) \sin \alpha \pm \sin \beta = 2 \sin \frac { 1 } { 2 } ( \alpha \pm \beta ) \cos \frac { 1 } { 2 } ( \alpha \mp \beta ) \\ \cos \alpha + \cos \beta = 2 \cos \frac { 1 } { 2 } ( \alpha + \beta ) \cos \frac { 1 } { 2 } ( \alpha - \beta ) \tag {16} sinα±sinβ=2sin21(α±β)cos21(αβ)cosα+cosβ=2cos21(α+β)cos21(αβ)(16)

2.6、欧拉公式

$$ 
{e^{ix}} = \cos {x} + i\sin {x}  
$$
  • 1
  • 2
  • 3

e i x = cos ⁡ x + i sin ⁡ x (17) {e^{ix}} = \cos {x} + i\sin {x} \tag {17} eix=cosx+isinx(17)

2.7、格林公式

$$  
\int\!\!\!\int\limits_D {({{\partial Q} \over {\partial x}} - {{\partial P} \over {\partial y}})dxdy = \oint\limits_L {Pdx + Qdy} }  
$$
  • 1
  • 2
  • 3

∫  ⁣ ⁣ ⁣ ∫ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ L P d x + Q d y (18) \int\!\!\!\int\limits_D {({{\partial Q} \over {\partial x}} - {{\partial P} \over {\partial y}})dxdy = \oint\limits_L {Pdx + Qdy} } \tag {18} D(xQyP)dxdy=LPdx+Qdy(18)

2.8、伯努利方程

$$  
{{dy} \over {dx}} + P(x)y = Q(x){y^n}(n \ne 0,1) 
$$
  • 1
  • 2
  • 3

d y d x + P ( x ) y = Q ( x ) y n ( n ≠ 0 , 1 ) (19) {{dy} \over {dx}} + P(x)y = Q(x){y^n}(n \ne 0,1) \tag {19} dxdy+P(x)y=Q(x)yn(n=0,1)(19)

2.9 、全微分方程

$$   
du(x,y) = P(x,y)dx + Q(x,y)dy = 0  
$$
  • 1
  • 2
  • 3

d u ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y = 0 (20) du(x,y) = P(x,y)dx + Q(x,y)dy = 0 \tag {20} du(x,y)=P(x,y)dx+Q(x,y)dy=0(20)

2.10 、非齐次微分方程通解

$$   
y = (\int {Q(x){e^{\int {P(x)dx} }}dx + C){e^{ - \int {P(x)dx} }}}   
$$
  • 1
  • 2
  • 3

y = ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) e − ∫ P ( x ) d x (21) y = (\int {Q(x){e^{\int {P(x)dx} }}dx + C){e^{ - \int {P(x)dx} }}} \tag {21} y=(Q(x)eP(x)dxdx+C)eP(x)dx(21)

2.11、柯西中值定理

 $$ 
 \frac{{f(b) - f(a)}}{{F(b) - F(a)}} = \frac{{f'(\xi )}}{{F'(\xi )}} 
 $$
  • 1
  • 2
  • 3

f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) (22) \frac{{f(b) - f(a)}}{{F(b) - F(a)}} = \frac{{f'(\xi )}}{{F'(\xi )}} \tag {22} F(b)F(a)f(b)f(a)=F(ξ)f(ξ)(22)

2.12、拉格朗日中值定理

$$ 
f(b) - f(a) = f'(\xi )(b - a) 
$$
  • 1
  • 2
  • 3

f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) (23) f(b) - f(a) = f'(\xi )(b - a) \tag{23} f(b)f(a)=f(ξ)(ba)(23)

2.13、曲面面积

$$
A = \int\!\!\!\int\limits_D {\sqrt {1 + {{\left( {{{\partial z} \over {\partial x}}} \right)}^2} + {{\left( {{{\partial z} \over {\partial y}}} \right)}^2}} dxdy}
$$  
  • 1
  • 2
  • 3

A = ∫  ⁣ ⁣ ⁣ ∫ D 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y (24) A = \int\!\!\!\int\limits_D {\sqrt {1 + {{\left( {{{\partial z} \over {\partial x}}} \right)}^2} + {{\left( {{{\partial z} \over {\partial y}}} \right)}^2}} dxdy} \tag{24} A=D1+(xz)2+(yz)2 dxdy(24)

2.14、重积分

 $$  
 \int\!\!\!\int\limits_D {f(x,y)dxdy}  = \int\!\!\!\int\limits_{D'} {f(r\cos \theta ,r\sin \theta )rdrd\theta }   
 $$
  • 1
  • 2
  • 3

∫  ⁣ ⁣ ⁣ ∫ D f ( x , y ) d x d y = ∫  ⁣ ⁣ ⁣ ∫ D ′ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r d θ (25) \int\!\!\!\int\limits_D {f(x,y)dxdy} = \int\!\!\!\int\limits_{D'} {f(r\cos \theta ,r\sin \theta )rdrd\theta } \tag{25} Df(x,y)dxdy=Df(rcosθ,rsinθ)rdrdθ(25)

2.15、arcsinx 求导

$$ 
(\arcsin x)' = \frac{1}{{\sqrt {1 - {x^2}} }} 
$$
  • 1
  • 2
  • 3

( arcsin ⁡ x ) ′ = 1 1 − x 2 (26) (\arcsin x)' = \frac{1}{{\sqrt {1 - {x^2}} }} \tag{26} (arcsinx)=1x2 1(26)

2.16、泰勒级数

 $$ p;ko[p';p[oooo]]
 e^x = 1 + \frac{x}{1!} +  \frac{x}{2!}+ \frac{x}{3!} + \cdots + O(x^n),     -\infty < x < \infty 
 $$
  • 1
  • 2
  • 3

e x = 1 + x 1 ! + x 2 ! + x 3 ! + ⋯ + O ( x n ) , − ∞ < x < ∞ (27) e^x = 1 + \frac{x}{1!} + \frac{x}{2!}+ \frac{x}{3!} + \cdots + O(x^n), -\infty < x < \infty \tag{27} ex=1+1!x+2!x+3!x++O(xn),<x<(27)

2.17、三角函数积分

$$
\int tgx \mathrm {d} x = -\ln {|\cos x|} + c
$$
  • 1
  • 2
  • 3

∫ t g x d x = − ln ⁡ ∣ cos ⁡ x ∣ + c (28) \int tgx \mathrm {d} x = -\ln {|\cos x|} + c \tag {28} tgxdx=lncosx+c(28)

2.18、二次曲面

 $$
 \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1 
 $$
  • 1
  • 2
  • 3

x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 (29) \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1 \tag{29} a2x2+b2y2c2z2=1(29)

2.19、二阶微分

$$
\frac{d^2y}{dx^2}+P(x)\frac{dy}{dx}+Q(x)y=f(x)
$$
  • 1
  • 2
  • 3

d 2 y d x 2 + P ( x ) d y d x + Q ( x ) y = f ( x ) (30) \frac{d^2y}{dx^2}+P(x)\frac{dy}{dx}+Q(x)y=f(x) \tag{30} dx2d2y+P(x)dxdy+Q(x)y=f(x)(30)

2.20、方向导数

$$
\frac{\partial f}{\partial l}=\frac{\partial f}{\partial x}\cos{\phi}+\frac{\partial f}{\partial y}\sin{\phi}
$$
  • 1
  • 2
  • 3

∂ f ∂ l = ∂ f ∂ x cos ⁡ ϕ + ∂ f ∂ y sin ⁡ ϕ (31) \frac{\partial f}{\partial l}=\frac{\partial f}{\partial x}\cos{\phi}+\frac{\partial f}{\partial y}\sin{\phi} \tag{31} lf=xfcosϕ+yfsinϕ(31)


三、公式

  • 下面的公式来自清风数学建模中有一张教latex语法的时候给出的4个例子

3.1、练习一

$$
\begin{aligned}
\min {f_1} &= \frac{\sqrt{\frac{1}{n-1}\sum(W_j-\overline{W}^2)}}{\overline{W}}
\\
\min{f_2} &= \max\limits_{1<j<n}{T_j}
\end{aligned}
\\
\operatorname{ s.t. }
\left\{
\begin{array}{}
x_{ij} &= 1, i = j \\
\sum\limits_{j=1}^n x_{ij}&=1, i \neq j \\
\frac{S_{ij}}{V} &\leq 3\\
x_{ij} & \in \{0,1\} \\
\overline{W} &= \frac{1}{n}\sum\limits_{j=1}^n W_j\\
&(i = 1,2,3,\cdots,m;j=1,2,\cdots,n)
\end{array}
\right.
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

min ⁡ f 1 = 1 n − 1 ∑ ( W j − W ‾ 2 ) W ‾ min ⁡ f 2 = max ⁡ 1 < j < n T j s.t. ⁡ { x i j = 1 , i = j ∑ j = 1 n x i j = 1 , i ≠ j S i j V ≤ 3 x i j ∈ { 0 , 1 } W ‾ = 1 n ∑ j = 1 n W j ( i = 1 , 2 , 3 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) (32)

minf1=1n1(WjW¯2)W¯minf2=max1<j<nTj
\\ \operatorname{ s.t. } \left\{
xij=1,i=jj=1nxij=1,ijSijV3xij{0,1}W¯=1nj=1nWj(i=1,2,3,,m;j=1,2,,n)
\right. \tag{32} minf1minf2=Wn11(WjW2) =1<j<nmaxTjs.t. xijj=1nxijVSijxijW=1,i=j=1,i=j3{0,1}=n1j=1nWj(i=1,2,3,,m;j=1,2,,n)(32)

3.2、练习二

$$
\begin{aligned}
\int_{k-1}^k \frac{dx_0^{(1)}(t)}{dt}\mathrm{dt} & \approx  - \hat{a}\int_{k-1}^kx_0^{(1)}dt+\int_{k-1}^k\hat b dt 
\\
& =  \int_{k-1}^k \left[-\hat a x_0 ^ {(1)} (t) + \hat b \right]dt
\end{aligned}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

∫ k − 1 k d x 0 ( 1 ) ( t ) d t d t ≈ − a ^ ∫ k − 1 k x 0 ( 1 ) d t + ∫ k − 1 k b ^ d t = ∫ k − 1 k [ − a ^ x 0 ( 1 ) ( t ) + b ^ ] d t (33)

k1kdx0(1)(t)dtdta^k1kx0(1)dt+k1kb^dt=k1k[a^x0(1)(t)+b^]dt
\tag{33} k1kdtdx0(1)(t)dta^k1kx0(1)dt+k1kb^dt=k1k[a^x0(1)(t)+b^]dt(33)

3.3、练习三

$$
\left\{
\begin{aligned}
z_1 & =  l_{11}x_1 + l_{12}x_2 + \cdots  +  l_{1p}x_p 
\\
z_2 & =  l_{21}x_1 + l_{22}x_2 + \cdots  +  l_{2p}x_p 
\\
& \vdots 
\\
z_m & =  l_{m1}x_1 + l_{m2}x_2 + \cdots  +  l_{mp}x_p 
\end{aligned}
\right.
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

{ z 1 = l 11 x 1 + l 12 x 2 + ⋯ + l 1 p x p z 2 = l 21 x 1 + l 22 x 2 + ⋯ + l 2 p x p ⋮ z m = l m 1 x 1 + l m 2 x 2 + ⋯ + l m p x p (34) \left\{

z1=l11x1+l12x2++l1pxpz2=l21x1+l22x2++l2pxpzm=lm1x1+lm2x2++lmpxp
\right. \tag{34} z1z2zm=l11x1+l12x2++l1pxp=l21x1+l22x2++l2pxp=lm1x1+lm2x2++lmpxp(34)

3.4、练习四

$$
x = 
x =  \left[ 
\begin{aligned} 
x_{11} & x_{12} & \cdots & x_{1p} \\ 
x_{21} & x_{22} & \cdots & x_{2p} \\ 
\vdots & \vdots & \ddots & \vdots \\ 
x_{n1} & x_{n2} & \cdots & x_{np} \\ 
\end{aligned} \right] 
=(x_1,x_2,\cdots,x_p)
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

x = x = [ x 11 x 12 ⋯ x 1 p x 21 x 22 ⋯ x 2 p ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n p ] = ( x 1 , x 2 , ⋯   , x p ) (35) x = x = \left[

x11x12x1px21x22x2pxn1xn2xnp
\right] =(x_1,x_2,\cdots,x_p) \tag{35} x=x= x11x21xn1x12x22xn2x1px2pxnp =(x1,x2,,xp)(35)

四、其他的一些例子

  • 博主平时学习、工作中用的,顺着写的就不一一整理了

y = f ( x ) = W T ⋅ x + b = [ x 1 x 2 ⋮ x n ] + b y = f(x)=W^T\cdot x + b = \left[

x1x2xn
\right] + b y=f(x)=WTx+b= x1x2xn +b

χ A = { 1 ,  A occurs  , 0 ,  A doesn’t occur.  \chi_{A}=\left\{

1, A occurs ,0, A doesn't occur. 
\right. χA={1,0, A occurs , A doesn’t occur. 

A = ( a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a m 1 ⋯ a m n ) A = \left(

a11a1nam1amn
\right) A= a11am1a1namn

ω ^ i = ∏ j = 1 n a i j n ∑ j = 1 n ∏ j = 1 n a i j n , i ∈ [ 1 , m ] (m为指标数量) \hat{\omega}_i = \frac{\sqrt[n]{\prod\limits_{j=1}^na_{ij}}}{\sum\limits_{j=1}^n\sqrt[n]{\prod\limits_{j=1}^na_{ij}}} , i \in [1,m]\tag{m为指标数量} ω^i=j=1nnj=1naij nj=1naij ,i[1,m](m为指标数量)

C R = C I R I = λ m a x − n R I ( n − 1 ) CR = \frac{CI}{RI} = \frac{\lambda_{max} - n}{RI(n-1)} CR=RICI=RI(n1)λmaxn

B j = − ∑ i = 1 m p i j ln ⁡ p i j ln ⁡ m B_j = -\sum\limits_{i=1}^m p_{ij}\frac{\ln{p_{ij}}}{\ln{m}} Bj=i=1mpijlnmlnpij

w j = 1 − B j ∑ j = 1 n ( 1 − B j ) w_{j} = \frac{1-B_j}{\sum\limits_{j=1}^n(1-B_j)} wj=j=1n(1Bj)1Bj

∑ j = 1 n w j = 1 , j ∈ [ 1 , n ] \sum_{j=1}^n w_j = 1,j \in [1,n] j=1nwj=1,j[1,n]

ω ‾ = { W 1 w 1 ∑ j = 1 n W j w j , W 2 w 2 ∑ j = 1 n W j w j , ⋯   , W n w n ∑ j = 1 n W j w j } = ( ω 1 , ω 2 , ⋯   , ω n ) \overline{\omega}=\left\{\frac{W_{1} w_{1}}{\sum_{j=1}^{n} W_{j} w_{j}}, \frac{W_{2} w_{2}}{\sum_{j=1}^{n} W_{j} w_{j}}, \cdots, \frac{W_{n} w_{n}}{\sum_{j=1}^{n} W_{j} w_{j}}\right\}=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right) ω={j=1nWjwjW1w1,j=1nWjwjW2w2,,j=1nWjwjWnwn}=(ω1,ω2,,ωn)

 s.t.  ∑ j = 1 n ω j = 1 ; ω j > 0 \text { s.t. } \sum_{j=1}^{n} \omega_{j}=1 ; \omega_{j}>0  s.t. j=1nωj=1;ωj>0

w j ( j = 1 , 2 , ⋯   , n ) w_j(j=1,2,\cdots,n) wj(j=1,2,,n)

X = [ x 11 x 12 ⋯ x 1 m x 21 x 22 ⋯ x 2 m ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n m ] X=\left[

x11x12x1mx21x22x2mxn1xn2xnm
\right] X= x11x21xn1x12x22xn2x1mx2mxnm
那么,对其标准化的矩阵记为Z, Z Z Z 中的每一个元素:
z i j = x i j / ∑ i = 1 n x i j 2 z_{i j}=x_{i j} / \sqrt{\sum_{i=1}^{n} x_{i j}^{2}} zij=xij/i=1nxij2
Z − = ( Z 1 − , Z 2 − , ⋯   , Z m − ) = ( min ⁡ { z 11 , z 21 , ⋯   , z n 1 } , min ⁡ { z 12 , z 22 , ⋯   , z n 2 } , ⋯   , min ⁡ { z 1 m , z 2 m , ⋯   , z n m } )
Z=(Z1,Z2,,Zm)=(min{z11,z21,,zn1},min{z12,z22,,zn2},,min{z1m,z2m,,znm})
Z=(Z1,Z2,,Zm)=(min{z11,z21,,zn1},min{z12,z22,,zn2},,min{z1m,z2m,,znm})

D i + = ∑ j = 1 m ( Z j + − z i j ) 2 D_i^+ = \sqrt{\sum\limits_{j=1}^m(Z_j^+ - z_{ij})^2} Di+=j=1m(Zj+zij)2

S i = D i − D i + + D i − S i ∈ [ 0 , 1 ] S_i = \frac{D_i^-}{D_i^+ + D_i^-} S_i \in [0,1] Si=Di++DiDiSi[0,1]

S i ~ = S i ∑ i = 1 n S i ~ \tilde{S_i} = \frac{S_i}{\sum\limits_{i=1}^n \tilde{S_i}} Si~=i=1nSi~Si
∑ i = 1 n S i ~ = 1 \sum\limits_{i=1}^n \tilde{S_i} = 1 i=1nSi~=1

min ⁡ f 1 = 1 n − 1 ∑ j = 1 n ( W j − W ‾ ) 2 W ‾ \min {f_1} = \frac{\sqrt{\frac{1}{n-1}\sum \limits _{j=1}^n (W_j - \overline {W})^2}}{\overline {W}} minf1=Wn11j=1n(WjW)2

min ⁡ f 2 = max ⁡ 1 < j < n T j \min{f_2} = \max\limits _ {1<j<n}{T_j} minf2=1<j<nmaxTj

∫ k − 1 k d x 0 ( 1 ) ( t ) d t d t ≈ − a ^ ∫ k − 1 k x 0 ( 1 )

k1kdx0(1)(t)dtdta^k1kx0(1)
k1kdtdx0(1)(t)dta^k1kx0(1)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/238358
推荐阅读
相关标签
  

闽ICP备14008679号