赞
踩
Rıza Alp G¨uler, Natalia Neverova, Natalia Neverova
DensePose-COCO: a large-scale ground-truth dataset with image-to-surface correspondences manually annotated on 50K COCO images(标数据的难度可想而知)
DensePose-RCNN: densely regress part-specific UV coordinates within every human region at multiple frames per second(居然还是使用回归这么原始的方法?还R-CNN?)
dense human pose estimation: dense correspondences between an RGB image and a surface-based representation of the human body
可想而知即使是标一张数据的难度也是较大的,因此作者介绍了一种有效的标注方法
in the wild: in the presence of background, occlusions and scale variations,这样的数据标注更困难,遑论预测
二维图像的理解和三维重建密切相关的
基于DenseReg,用CNN回归3D模型与RGB图像间点的对应关系。但是这里的问题相比于DenseReg更困难,因为in the wild,人的姿势变化更剧烈。
contributions:
1. introduce the first manually-collected ground truth dataset for the task, by gathering dense correspondences between the SMPL model and persons appearing in the COCO dataset
2. use the resulting dataset to train CNN-based systems that deliver dense correspondence ‘in the wild’, by regressing ody surface coordinates at any image pixel, observing a superiority of region-based models over fully-convolutional networks
3. use sparse correspondences defined over a randomly chosen subset of image pixels per training sample to ‘inpaint’ the supervision signal in the rest of the image domain
Head, Torso, Lower/Upper Arms, Lower/Upper Legs, Hands and Feet
head, hands and feet: use the manually obtained UV fields provided in the SMPL model
rest of the parts: obtain the unwrapping via multidimensional scaling applied to pairwise geodesic distances
人标记的数据也是有误差的,尤其是对于比较精细的部位,如头、手脚等
Pointwise evaluation: evaluates correspondence accuracy over the whole image domain through the Ratio of Correct Point (RCP) correspondences (a correspondence is declared correct if the geodesic distance is below a certain threshold). 对于不同阈值
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。