赞
踩
基于Python--opencv的人脸识别
- # pip install 第三方包 -i https://pypi.tuna.tsinghua.edu.cn/simple 使用清华镜像源加快速度
-
- # pillow的安装,输入:
- pip install pillow -i https://pypi.tuna.tsinghua.edu.cn/simple
- # contrib的安装
- pip install opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple
- # opencv -python的安装,输入:
- pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
- import numpy as np
- import cv2
-
- # 人脸识别分类器 //填入的路径为你建立的新的文件夹的路径
- faceCascade = cv2.CascadeClassifier(r'E:cvfacehaarcascade_frontalface_default.xml')
-
- # 识别眼睛的分类器
- eyeCascade = cv2.CascadeClassifier(r'E:cvfacehaarcascade_eye.xml')
-
- # 开启摄像头
- cap = cv2.VideoCapture(0)
- ok = True
-
- while ok:
- # 读取摄像头中的图像,ok为是否读取成功的判断参数
- ok, img = cap.read()
- # 转换成灰度图像
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
-
- # 人脸检测
- faces = faceCascade.detectMultiScale(
- gray,
- scaleFactor=1.2,
- minNeighbors=5,
- minSize=(32, 32)
- )
-
- # 在检测人脸的基础上检测眼睛
- for (x, y, w, h) in faces:
- fac_gray = gray[y: (y+h), x: (x+w)]
- result = []
- eyes = eyeCascade.detectMultiScale(fac_gray, 1.3, 2)
-
- # 眼睛坐标的换算,将相对位置换成绝对位置
- for (ex, ey, ew, eh) in eyes:
- result.append((x+ex, y+ey, ew, eh))
-
- # 画矩形
- for (x, y, w, h) in faces:
- cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
-
- for (ex, ey, ew, eh) in result:
- cv2.rectangle(img, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2)
-
- cv2.imshow('video', img)
-
- k = cv2.waitKey(1)
- if k == 27: # press 'ESC' to quit
- break
-
- cap.release()
- cv2.destroyAllWindows()
- import cv2
- import os
- # 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2
-
- cap = cv2.VideoCapture(0)
-
- face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
-
- face_id = input('n enter user id:')
-
- print('n Initializing face capture. Look at the camera and wait ...')
-
- count = 0
-
- while True:
-
- # 从摄像头读取图片
-
- sucess, img = cap.read()
-
- # 转为灰度图片
-
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
-
- # 检测人脸
-
- faces = face_detector.detectMultiScale(gray, 1.3, 5)
-
- for (x, y, w, h) in faces:
- cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))
- count += 1
-
- # 保存图像
- cv2.imwrite("Facedata/User." + str(face_id) + '.' + str(count) + '.jpg', gray[y: y + h, x: x + w])
-
- cv2.imshow('image', img)
-
- # 保持画面的持续。
-
- k = cv2.waitKey(1)
-
- if k == 27: # 通过esc键退出摄像
- break
-
- elif count >= 1000: # 得到1000个样本后退出摄像
- break
-
- # 关闭摄像头
- cap.release()
- cv2.destroyAllWindows()
- import numpy as np
- from PIL import Image
- import os
- import cv2
- # 人脸数据路径
- path = 'Facedata'
-
- recognizer = cv2.face.LBPHFaceRecognizer_create()
- detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
-
- def getImagesAndLabels(path):
- imagePaths = [os.path.join(path, f) for f in os.listdir(path)] # join函数的作用?
- faceSamples = []
- ids = []
- for imagePath in imagePaths:
- PIL_img = Image.open(imagePath).convert('L') # convert it to grayscale
- img_numpy = np.array(PIL_img, 'uint8')
- id = int(os.path.split(imagePath)[-1].split(".")[1])
- faces = detector.detectMultiScale(img_numpy)
- for (x, y, w, h) in faces:
- faceSamples.append(img_numpy[y:y + h, x: x + w])
- ids.append(id)
- return faceSamples, ids
-
-
- print('Training faces. It will take a few seconds. Wait ...')
- faces, ids = getImagesAndLabels(path)
- recognizer.train(faces, np.array(ids))
-
- recognizer.write(r'face_trainertrainer.yml')
- print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))
- import cv2
-
- recognizer = cv2.face.LBPHFaceRecognizer_create()
- recognizer.read('face_trainer/trainer.yml')
- cascadePath = "haarcascade_frontalface_default.xml"
- faceCascade = cv2.CascadeClassifier(cascadePath)
- font = cv2.FONT_HERSHEY_SIMPLEX
-
- idnum = 0
-
- names = ['wanzixuan', 'Bob']
-
- cam = cv2.VideoCapture(0)
- minW = 0.1*cam.get(3)
- minH = 0.1*cam.get(4)
-
- while True:
- ret, img = cam.read()
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
-
- faces = faceCascade.detectMultiScale(
- gray,
- scaleFactor=1.2,
- minNeighbors=5,
- minSize=(int(minW), int(minH))
- )
-
- for (x, y, w, h) in faces:
- cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
- idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w])
-
- if confidence < 100:
- idnum = names[idnum]
- confidence = "{0}%".format(round(100 - confidence))
- else:
- idnum = "unknown"
- confidence = "{0}%".format(round(100 - confidence))
-
- cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1)
- cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (0, 0, 0), 1)
-
- cv2.imshow('camera', img)
- k = cv2.waitKey(10)
- if k == 27:
- break
-
- cam.release()
- cv2.destroyAllWindows()
见博客<https://www.delehub.top/>
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。