当前位置:   article > 正文

PyTorch——自注意力(self-attention)机制实现(代码详解)_自注意力机制代码

自注意力机制代码

参考链接

  1. https://www.bilibili.com/video/BV1JE411g7XF?p=54
  2. https://arxiv.org/abs/1706.03762
  3. https://blog.csdn.net/qq_36653505/article/details/83375160

简述自注意力机制(self-attention)

self-attention可以视为一个特征提取层,给定输入特征 a 1 , a 2 , ⋅ ⋅ ⋅ a n a^{1},a^{2},\cdot \cdot \cdot a^{n} a1,a2,an,经过self-attention layer,融合每个输入特征,得到新的特征 b 1 , b 2 , ⋅ ⋅ ⋅ b n b^{1},b^{2},\cdot \cdot \cdot b^{n} b1,b2,bn。具体如下:

设输入特征为 I I I,分别将其乘以三个矩阵 W q W^{q} Wq W k W^{k} Wk W v W^{v} Wv得到 Q Q Q(query)、 K K K(key)和 V V V(value)三个矩阵;接下来使用矩阵 Q Q Q K K K的乘积得到注意力矩阵 A A A,归一化得到 A ^ \hat{A} A^;最后,将归一化后的注意力矩阵 A ^ \hat{A} A^乘上 V V V,得到最后的输出特征 O O O
在这里插入图片描述

多头自注意力机制(multi-head self-attention)

上述的self-attention中,每个输入特征 a i a^{i} ai乘上矩阵 W q W^{q} Wq W k W^{k} Wk W v W^{v} Wv后,分别得到一个向量 q i q^{i} qi k i k^{i} ki v i v^{i} vi,称为单头自注意力机制。如果将这些向量 q i q^{i} qi k i k^{i} ki v i v^{i} vi分裂为 n n n个就得到 n n n头自注意力机制了。公认多头自注意力机制的效果好于单头的,因为前者可以捕获更多维度的信息。示意图如下:
在这里插入图片描述

代码实现

设超参数num_attention_heads为自注意力机制的头数,如此,计算出每个头的维度attention_head_size。

self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = hidden_size
  • 1
  • 2
  • 3

定义 W q W^{q} Wq W k W^{k} Wk W v W^{v} Wv三个矩阵。

self.query = nn.Linear(input_size, self.all_head_size)
self.key = nn.Linear(input_size, self.all_head_size)
self.value = nn.Linear(input_size, self.all_head_size)
  • 1
  • 2
  • 3

下面开始逐步计算,需要主要的是计算过程中张量维度的变化。
将输入特征乘以三个矩阵 W q W^{q} Wq W k W^{k} Wk W v W^{v} Wv,输出的张量此时还没有区分出多个头。维度变化为:input_tensor ( b a t c h , n , i n p u t _ s i z e ) \left ( batch,n,input\_size\right ) (batch,n,input_size)到mixed_query_layer ( b a t c h , n , a l l _ h e a d _ s i z e ) \left ( batch,n,all\_head\_size\right ) (batch,n,all_head_size)

mixed_query_layer = self.query(input_tensor)
mixed_key_layer = self.key(input_tensor)
mixed_value_layer = self.value(input_tensor)
  • 1
  • 2
  • 3

切分为num_attention_heads个头,并变换维度。维度变化为:mixed_query_layer ( b a t c h , n , a l l _ h e a d _ s i z e ) \left ( batch,n,all\_head\_size\right ) (batch,n,all_head_size)到query_layer ( b a t c h , n u m _ a t t e n t i o n _ h e a d s , n , a t t e n t i o n _ h e a d _ s i z e ) \left ( batch,num\_attention\_heads,n,attention\_head\_size\right ) (batch,num_attention_heads,n,attention_head_size)

def transpose_for_scores(self, x):
   new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
   x = x.view(*new_x_shape)
   return x.permute(0, 2, 1, 3)

query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

矩阵 Q Q Q K K K相乘,得到注意力矩阵,并除以向量的维度的开方,防止注意力分数随维度增大而增大。维度变化为:query_layer ( b a t c h , n u m _ a t t e n t i o n _ h e a d s , n , a t t e n t i o n _ h e a d _ s i z e ) \left ( batch,num\_attention\_heads,n,attention\_head\_size\right ) (batch,num_attention_heads,n,attention_head_size)到attention_scores ( b a t c h , n u m _ a t t e n t i o n _ h e a d s , n , n ) \left ( batch,num\_attention\_heads,n,n\right ) (batch,num_attention_heads,n,n)

attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

attention_scores = attention_scores / math.sqrt(self.attention_head_size)
  • 1
  • 2
  • 3

注意力矩阵归一化。维度变化为:attention_scores ( b a t c h , n u m _ a t t e n t i o n _ h e a d s , n , n ) \left ( batch,num\_attention\_heads,n,n\right ) (batch,num_attention_heads,n,n)到attention_probs ( b a t c h , n u m _ a t t e n t i o n _ h e a d s , n , n ) \left ( batch,num\_attention\_heads,n,n\right ) (batch,num_attention_heads,n,n)

attention_probs = nn.Softmax(dim=-1)(attention_scores)
  • 1

将注意力矩阵乘以矩阵 V V V。维度变化为:ttention_probs ( b a t c h , n u m _ a t t e n t i o n _ h e a d s , n , n ) \left ( batch,num\_attention\_heads,n,n\right ) (batch,num_attention_heads,n,n)乘以value_layer ( b a t c h , n u m _ a t t e n t i o n _ h e a d s , n , a t t e n t i o n _ h e a d _ s i z e ) \left ( batch,num\_attention\_heads,n,attention\_head\_size\right ) (batch,num_attention_heads,n,attention_head_size)到context_layer ( b a t c h , n u m _ a t t e n t i o n _ h e a d s , n , a t t e n t i o n _ h e a d _ s i z e ) \left ( batch,num\_attention\_heads,n,attention\_head\_size\right ) (batch,num_attention_heads,n,attention_head_size)

context_layer = torch.matmul(attention_probs, value_layer)
  • 1

变换context_layer维度,为了后面将各头得到的结果拼接。这里的contiguous()是将tensor的内存变成连续的,为后面的view()做准备。维度变化为:context_layer ( b a t c h , n u m _ a t t e n t i o n _ h e a d s , n , a t t e n t i o n _ h e a d _ s i z e ) \left ( batch,num\_attention\_heads,n,attention\_head\_size\right ) (batch,num_attention_heads,n,attention_head_size)到context_layer ( b a t c h , n , n u m _ a t t e n t i o n _ h e a d s , a t t e n t i o n _ h e a d _ s i z e ) \left ( batch,n,num\_attention\_heads,attention\_head\_size\right ) (batch,n,num_attention_heads,attention_head_size)

context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
  • 1

将各头的结果拼接起来。维度变化为:context_layer ( b a t c h , n , n u m _ a t t e n t i o n _ h e a d s , a t t e n t i o n _ h e a d _ s i z e ) \left ( batch,n,num\_attention\_heads,attention\_head\_size\right ) (batch,n,num_attention_heads,attention_head_size)到context_layer ( b a t c h , n , a l l _ h e a d _ s i z e ) \left ( batch,n,all\_head\_size\right ) (batch,n,all_head_size)

new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
  • 1
  • 2

完整代码

class LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        """Construct a layernorm module in the TF style (epsilon inside the square root).
        """
        super(LayerNorm, self).__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x + self.bias
        
class SelfAttention(nn.Module):
    def __init__(self, num_attention_heads, input_size, hidden_size, hidden_dropout_prob):
        super(SelfAttention, self).__init__()
        if hidden_size % num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (hidden_size, num_attention_heads))
        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = hidden_size

        self.query = nn.Linear(input_size, self.all_head_size)
        self.key = nn.Linear(input_size, self.all_head_size)
        self.value = nn.Linear(input_size, self.all_head_size)

        self.attn_dropout = nn.Dropout(attention_probs_dropout_prob)

        # 做完self-attention 做一个前馈全连接 LayerNorm 输出
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.LayerNorm = LayerNorm(hidden_size, eps=1e-12)
        self.out_dropout = nn.Dropout(hidden_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, input_tensor):
        mixed_query_layer = self.query(input_tensor)
        mixed_key_layer = self.key(input_tensor)
        mixed_value_layer = self.value(input_tensor)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        # [batch_size heads seq_len seq_len] scores
        # [batch_size 1 1 seq_len]

        # attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        # Fixme
        attention_probs = self.attn_dropout(attention_probs)
        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        hidden_states = self.dense(context_layer)
        hidden_states = self.out_dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)

        return hidden_states
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/351215
推荐阅读
相关标签
  

闽ICP备14008679号