赞
踩
1.安装ros2
这里使用小鱼的一键安装,根据自己的喜好安装,博主用的是ros2的foxy版本
wget http://fishros.com/install -O fishros && . fishros
2.下载代码(这里使用的是古月居的代码)
可以结合古月居的B站视频来自己一步一步操作,里面有讲解基础理论与一些环境的配置
https://www.bilibili.com/video/BV16B4y1Q7jQ?p=1&vd_source=7ab152ebd2f75f63466b8dc7d78d3cf2
3.下载yolov5的代码
https://github.com/fishros/yolov5_ros2/tree/main
将古月居下载的代码与yolov5的代码一起放入一个文件夹下
4.打开终端安装依赖
- sudo apt update
- sudo apt install python3-pip ros-<ros2-distro>-vision-msgs # <ros2-distro>替换为humble,foxy或galactic等ros2发行版
- pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple yolov5
注:如果pip3的安装命令出现报错如下:
这里就代表下载torch时网速慢,需要换源下载,这里我用的是去下载了torch的离线包自己进行安装https://download.pytorch.org/whl/cu116,下载安装包之前自己要先安装cuda
进入torch后使用Ctrl+f进行搜索,cuda对应的torch版本和你的python版本,一键安装ros2的时候会下载一个python2与python3,在终端输入python3就会得到python的版本
从网上自己搜索torch对应版本的torchvision版本
在这里右键打开终端进行安装,torchvision同理,要学会常用tab建去补全命令
然后重新下载依赖
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple yolov5
5.修改下载的yolov5_ros2下的yolo_detect_2d.py代码
- from math import frexp
- from traceback import print_tb
- from torch import imag
- from yolov5 import YOLOv5
- import rclpy
- from rclpy.node import Node
- from ament_index_python.packages import get_package_share_directory
- from rcl_interfaces.msg import ParameterDescriptor
-
- from vision_msgs.msg import Detection2DArray, ObjectHypothesisWithPose, Detection2D
- from sensor_msgs.msg import Image, CameraInfo
- from cv_bridge import CvBridge
- import cv2
- import yaml
-
- from yolov5_ros2.cv_tool import px2xy
-
- package_share_directory = get_package_share_directory('yolov5_ros2')
- # package_share_directory = "/home/mouse/code/github/yolov
- #
- # 5_test/src/yolov5_ros2"
-
-
- class YoloV5Ros2(Node):
- def __init__(self):
- super().__init__('yolov5_ros2')
- self.declare_parameter("device", "cuda", ParameterDescriptor(
- name="device", description="calculate_device default:cpu optional:cuda:0"))
-
- self.declare_parameter("model", "yolov5s", ParameterDescriptor(
- name="model", description="default: yolov5s.pt"))
-
- self.declare_parameter("image_topic", "/image_raw", ParameterDescriptor(
- name="image_topic", description=f"default: /image_raw"))
- # /camera/image_raw
-
- self.declare_parameter("camera_info_topic", "/camera/camera_info", ParameterDescriptor(
- name="camera_info_topic", description=f"default: /camera/camera_info"))
-
- # 默认从camera_info中读取参数,如果可以从话题接收到参数则覆盖文件中的参数
- self.declare_parameter("camera_info_file", f"{package_share_directory}/config/camera_info.yaml", ParameterDescriptor(
- name="camera_info", description=f"{package_share_directory}/config/camera_info.yaml"))
-
- # 默认显示识别结果
- self.declare_parameter("show_result", True, ParameterDescriptor(
- name="show_result", description=f"default: True"))
-
- # 1.load model
- model_path = package_share_directory + "/config/" + self.get_parameter('model').value + ".pt"
- device = self.get_parameter('device').value
- self.yolov5 = YOLOv5(model_path=model_path, device=device)
-
- # 2.create publisher
- self.yolo_result_pub = self.create_publisher(
- Detection2DArray, "yolo_result", 10)
- self.result_msg = Detection2DArray()
-
- # 3.create sub image (if 3d, sub depth, if 2d load camera info)
- image_topic = self.get_parameter('image_topic').value
- self.image_sub = self.create_subscription(
- Image, image_topic, self.image_callback, 10)
-
- camera_info_topic = self.get_parameter('camera_info_topic').value
- self.camera_info_sub = self.create_subscription(
- CameraInfo, camera_info_topic, self.camera_info_callback, 1)
-
- # get camera info
- with open(self.get_parameter('camera_info_file').value) as f:
- self.camera_info = yaml.full_load(f.read())
- print(self.camera_info['k'], self.camera_info['d'])
-
- # 4.convert cv2 (cvbridge)
- self.bridge = CvBridge()
-
- self.show_result = self.get_parameter('show_result').value
-
- def camera_info_callback(self, msg: CameraInfo):
- """
- 通过回调函数获取到相机的参数信息
- """
- self.camera_info['k'] = msg.k
- self.camera_info['p'] = msg.p
- self.camera_info['d'] = msg.d
- self.camera_info['r'] = msg.r
- self.camera_info['roi'] = msg.roi
-
- self.camera_info_sub.destroy()
-
- def image_callback(self, msg: Image):
-
- # 5.detect pub result
- image = self.bridge.imgmsg_to_cv2(msg)
- detect_result = self.yolov5.predict(image)
- self.get_logger().info(str(detect_result))
-
- self.result_msg.detections.clear()
- self.result_msg.header.frame_id = "camera"
- self.result_msg.header.stamp = self.get_clock().now().to_msg()
-
- # parse results
- predictions = detect_result.pred[0]
- boxes = predictions[:, :4] # x1, y1, x2, y2
- scores = predictions[:, 4]
- categories = predictions[:, 5]
-
- for index in range(len(categories)):
- name = detect_result.names[int(categories[index])]
- detection2d = Detection2D()
- detection2d.tracking_id = name
- # detection2d.bbox
- x1, y1, x2, y2 = boxes[index]
- x1 = int(x1)
- y1 = int(y1)
- x2 = int(x2)
- y2 = int(y2)
- center_x = (x1+x2)/2.0
- center_y = (y1+y2)/2.0
-
- # detection2d.bbox.center.position.x = center_x
- # detection2d.bbox.center.position.y = center_y
-
- # galactic使用如下center坐标,否则会报错:Pose2D object has no attribute position
- # 其它版本未验证
- # 参考http://docs.ros.org/en/api/vision_msgs/html/msg/BoundingBox2D.html 及 http://docs.ros.org/en/api/geometry_msgs/html/msg/Pose2D.html
- detection2d.bbox.center.x = center_x
- detection2d.bbox.center.y = center_y
-
- detection2d.bbox.size_x = float(x2-x1)
- detection2d.bbox.size_y = float(y2-y1)
-
- obj_pose = ObjectHypothesisWithPose()
- obj_pose.id = name
- obj_pose.score = float(scores[index])
-
- # px2xy
- world_x, world_y = px2xy(
- [center_x, center_y], self.camera_info["k"], self.camera_info["d"], 1)
- obj_pose.pose.pose.position.x = world_x
- obj_pose.pose.pose.position.y = world_y
- # obj_pose.pose.pose.position.z = 1.0 #2D相机则显示,归一化后的结果,用户用时自行乘上深度z获取正确xy
- detection2d.results.append(obj_pose)
- self.result_msg.detections.append(detection2d)
-
- # draw
- if self.show_result:
- cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
- cv2.putText(image, name, (x1, y1),
- cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
- cv2.imshow('result', image)
- cv2.waitKey(1)
-
- # if view or pub
- if self.show_result:
- cv2.imshow('result', image)
- cv2.waitKey(1)
-
- print("before publish out if")
- if len(categories) > 0:
- self.yolo_result_pub.publish(self.result_msg)
-
- def main():
- rclpy.init()
- rclpy.spin(YoloV5Ros2())
- rclpy.shutdown()
-
-
- if __name__ == "__main__":
- main()
6.编译工作空间
在src外打开终端进行编译
colcon build
使用colcon build进行编译src文件夹下的代码
搜寻本地编译
source install/local_setup.bash
如果想随时随地使用,打开主目录,使用ctrl+h打开隐藏文件找到.bashrc文件打开,插入一行
7.运行仿真建模
ros2 launch learning_gazebo load_mbot_camera_into_gazebo.launch.py
开启另一个终端
ros2 run yolov5_ros2 yolo_detect_2d --ros-args -p device:=cpu -p image_topic:=/camera/image_raw
注:image_topic:=后是相机发布的话题名,将话题名改为相机所发布的话题名一致就能实现目标检测了,效果如下
可以通过开启另一个终端下输入以下命令实现小车的移动
ros2 run teleop_twist_keyboard teleop_twist_keyboard
在上面终端中按i是前进,j是向左旋转视角,l是向右旋转,k是停止移动,,(逗号)为后退。
博客会不定期修改与更新,建议收藏!!!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。