赞
踩
- 作者简介:一名后端开发人员,每天分享后端开发以及人工智能相关技术,行业前沿信息,面试宝典。
- 座右铭:未来是不可确定的,慢慢来是最快的。
- 个人主页:极客李华-CSDN博客
- 合作方式:私聊+
- 这个专栏内容:用最低价格鼓励和博主一起在寒假打卡高频大厂算法题,连续一个月,提升自己的算法实力,为了算法比赛或者春招。
- 我的CSDN社区:https://bbs.csdn.net/forums/99eb3042821a4432868bb5bfc4d513a8
- 微信公众号,抖音,b站等平台统一叫做:极客李华,加入微信公众号领取各种编程资料,加入抖音,b站学习面试技巧,职业规划
猫狗分类器是一个深度学习项目,旨在识别图像中的猫和狗。通过训练神经网络模型,该项目可以从输入的图像中准确地识别出是猫还是狗。这个项目可以应用于许多实际场景,如图像分类、动物识别等。
首先,需要准备一个包含猫和狗图像的数据集。您可以从各种来源收集这些图像数据,例如网络上的图片库或自己的图片文件夹。确保每个类别的图像都放在单独的文件夹中,并将它们命名为相应的类别。
在加载图像数据之前,需要进行一些预处理步骤。这包括调整图像大小、将图像转换为张量以及标准化图像数据。通过torchvision.transforms
模块,我们可以方便地实现这些预处理步骤。
import torch
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
将使用卷积神经网络(CNN)来构建我们的猫狗分类器。CNN是一种在图像识别任务中非常流行的深度学习模型。
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
# 定义卷积层、池化层和全连接层
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 2)
def forward(self, x):
# 前向传播函数
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64 * 8 * 8) # 将特征展平为一维向量
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
将使用训练集来训练我们的模型,并使用测试集来评估模型的性能。
import torch.optim as optim
# 实例化模型、定义损失函数和优化器
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
try:
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if (i+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Iteration [{i+1}/{len(train_loader)}], Loss: {running_loss/100:.4f}')
running_loss = 0.0
except Exception as e:
print(f"Error processing batch {i}:", str(e))
continue
print('Finished Training')
在训练完成后,需要评估模型在测试集上的性能。
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the {total} test images: {100 * correct / total}%')
完整代码:
import os
import torch
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt
from PIL import Image
# 设置随机种子
torch.manual_seed(42)
# 数据预处理,包括调整大小、转换为张量、以及标准化
transform = transforms.Compose([
transforms.Resize((64, 64)), # 将图像调整为 64x64 大小
transforms.ToTensor(), # 将图像转换为张量
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # 标准化图像数据
])
# 加载训练数据集,使用ImageFolder自动加载图像数据,并应用上面定义的数据预处理
# root参数指定数据集根目录
train_dataset = ImageFolder(root='D:\\系统默认\\桌面\\python\\PetImages\\', transform=transform)
# 计算训练集的大小
train_size = int(0.8 * len(train_dataset))
test_size = len(train_dataset) - train_size
# 划分训练集和测试集
train_dataset, test_dataset = torch.utils.data.random_split(train_dataset, [train_size, test_size])
# 创建数据加载器,用于加载训练集和测试集的数据
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)
# 定义卷积神经网络模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
# 定义卷积层
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
# 定义池化层
self.pool = nn.MaxPool2d(2, 2)
# 定义全连接层
self.fc1 = nn.Linear(64 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 2)
def forward(self, x):
# 前向传播函数,定义网络结构
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64 * 8 * 8) # 将特征展平为一维向量
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 实例化模型、定义损失函数和优化器
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
try:
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if (i+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Iteration [{i+1}/{len(train_loader)}], Loss: {running_loss/100:.4f}')
running_loss = 0.0
except Exception as e:
print(f"Error processing batch {i}:", str(e))
continue
print('Finished Training')
# 保存模型
torch.save(model.state_dict(), 'cat_dog_model.pth')
# 测试模型
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the {total} test images: {100 * correct / total}%')
想要获取数据集在这个地址里面:GitHub地址
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。