赞
踩
- import spacy
- nlp = spacy.load('en_core_web_sm')
- doc_2 = nlp('Weather is good, very windy and sunny.We have no classes in afternoon')
- for ent in doc_2.ents:
- print('{}--{}'.format(ent,ent.label_))
-
- from spacy import displacy
- doc = nlp('Weather is good, very windy and sunny.We have no classes in afternoon')
- displacy.render(doc,style='ent',jupyter=True)
- import spacy
-
- nlp2 = spacy.load('zh_core_web_sm') #加载中文包
- def read_file(file_name): #打开要处理的文本
- with open(file_name,'r',encoding='utf-8') as file:
- return file.read()
-
- text = read_file('./data/nba.txt') #读取文本
- processed_text = nlp2(text)
- processed_text
-
- sentences = [s for s in processed_text.sents]
- print(len(sentences)) #输出有多少句话
-
- from spacy import displacy
- doc = nlp2(text)
- displacy.render(doc,style='ent',jupyter=True)
-
- from collections import Counter
- def find_person(doc):
- c = Counter()
- for ent in processed_text.ents:
- print(ent.label_)
- print(ent.lemma_)
- if ent.label_ == 'DATE':
- c[ent.lemma_]+=1
- return c.most_common(1)
- print(find_person(processed_text))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。