当前位置:   article > 正文

中mask设置_NLP 中的Mask全解

怎么修改full mask语言模型的语法

e42e3967448c72a992f1a938102356ed.png

Mask 在NLP中是一个很常规的操作,也有多种应用的场景和形式,下面尝试从以下几个方面去全(用了夸张的修辞手法)解Mask,并尽可能地辅以图片说明和代码解释:

  • Mask的作用:
    • 处理非定长序列
      • RNN中的Mask
      • Attention中Mask
    • 防止标签泄露
      • Transformer中的Mask
      • BERT中的Mask
      • XLNet中的Mask

Mask的作用

对于NLP中mask的作用,先上结论:

1、padding mask:处理非定长序列,区分padding和非padding部分,如在RNN等模型和Attention机制中的应用等
2、sequence mask:防止标签泄露,如:Transformer decoder中的mask矩阵,BERT中的[Mask]位,XLNet中的mask矩阵等
PS:padding mask 和 sequence mask非官方命名

处理非定长序列

在NLP中,文本一般是不定长的,所以在进行 batch训练之前,要先进行长度的统一,过长的句子可以通过truncating 截断到固定的长度,过短的句子可以通过 padding 增加到固定的长度,但是 padding 对应的字符只是为了统一长度,并没有实际的价值,因此希望在之后的计算中屏蔽它们,这时候就需要 Mask。

a4a6e1f45e8646998be6bf0c2feb8bf8.png

图片参考

上图为中文场景下,一个 batch=5 的,以字为单位的输入矩阵(也可以在分词后以词为单位)和 mask 矩阵,左图已经将文本 padding 到统一长度了,右图中的1表示有效字,0代表无效字。

RNN中的Mask

对于RNN等模型,本身是可以直接处理不定长数据的,因此它不需要提前告知 sequence length,如下是pytorch下的LSTM定义:

nn.LSTM(input_size, hidden_size, *args, **kwargs)

但是在实践中,为了 batch 训练,一般会把不定长的序列 padding 到相同长度,再用 mask 去区分非 padding 部分和 padding 部分。

区分的目的是使得

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/397385
推荐阅读
相关标签
  

闽ICP备14008679号