当前位置:   article > 正文

用 Python 制作一个可视化大屏,其实特简单!(文末附python学习资料)_python大屏显示

python大屏显示

经常有小伙伴问,如何制作数据可视化大屏

今天将手把手带你爬取奥运会相关信息,并利用可视化大屏为你展示奥运详情。让一个没关注过奥运会的朋友,也能够秒懂奥运会。

如果你希望以更加简便的方式来创建大屏,文末再提供两种方法。喜欢点赞支持。
在这里插入图片描述

1、项目背景

奥运会刚刚过去,你是否已经看过2020东京奥运会呢?
在这里插入图片描述

2、奥运会相关信息爬取

  • 爬取字段: 国家、国家ID、排名、金牌数、银牌数、铜牌数、奖牌总数、项目名、运动员、获奖类型、获奖时间;
  • 爬取说明: 基于两个接口的数据爬取【json格式的数据】,直接采用键值对的方式获取相关数据;
  • 使用工具: Pandas+requests

本文是基于两个接口的数据爬取,相对容易的多。

# 这个链接主要展示:各国的金银铜牌及其总数!
https://app-sc.miguvideo.com/vms-livedata/olympic-medal/total-table/15/110000004609

# 这个链接主要展示:每个参赛队员的参赛项目和获得的奖牌情况!
https://app-sc.miguvideo.com/vms-livedata/olympic-medal/total-table/15/110000004609
  • 1
  • 2
  • 3
  • 4
  • 5

① 导入相关库

import requests
import pandas as pd
from pprint import pprint
  • 1
  • 2
  • 3

requests库用于发起网页请求,获取网页中的源代码;

pandas库用于存储和读取获取到的信息;

pprint库是漂亮的打印,对于json格式的数据,能够很好的展示结构,方便我们解析;

② 爬虫讲解

url = 'https://app-sc.miguvideo.com/vms-livedata/olympic-medal/total-table/15/110000004609'
data = requests.get(url).json()
pprint(data)
  • 1
  • 2
  • 3

三行代码就可以获取到网页的源代码,利用pprint库,可以清晰的展示json结构,对于我们解析数据很有帮助。
在这里插入图片描述
从图中可以很清晰地看到,我们要的数据,都存在于body键下面的allMedalData键中,allMedalData键的值是一个列表,里面有很多字典组成的键值对信息,就是我们要爬取的数据。

直接利用键获取对应的值信息,代码如下:

df1 = pd.DataFrame()
for info in data1['body']['allMedalData']:
    name = info['countryName']
    name_id = info['countryId']
    rank = info['rank']
    gold = info['goldMedalNum']
    silver = info['silverMedalNum']
    bronze = info['bronzeMedalNum']
    total = info['totalMedalNum']
    # 组织数据
    orangized_data = [[name,name_id,rank,gold,silver,bronze,total]]
    # 然后追加df
    df1 = df1.append(orangized_data)
df1.columns = ['名称', 'ID', '排名', '金牌', '银牌', '铜牌', '奖牌总数']
df1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

结果如下:
在这里插入图片描述
对于另外一个网页,我们采取同样的方式。

url = 'https://app-sc.miguvideo.com/vms-livedata/olympic-medal/detail-total/15/110000004609'
data2 = requests.get(url).json()
pprint(data2)
  • 1
  • 2
  • 3

结果如下:
在这里插入图片描述
是不是此时感觉结构更清楚了?

df2 = pd.DataFrame()
for info in data2['body']['medalTableDetail']:
    english_name = info['countryName']
    name_id = info['countryId']
    award_time = info['awardTime']
    item_name = info['bigItemName']
    sports_name = info['sportsName']
    medal_type = info['medalType']
    # 组织数据
    orangized_data = [[english_name,name_id,award_time,item_name,sports_name,medal_type]]
    # 然后追加df
    df2 = df2.append(orangized_data)
df2.columns = ['英文缩写', 'ID', '获奖时间', '项目名', '运动员', '金牌类型']
df2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

结果如下:
在这里插入图片描述

3、数据预处理

对于爬取到的数据,往往是有问题的,我们需要提前预处理一下,方便后续做可视化展示。

① 数据拼接

对我们共有三个表格,分别存储着不同的信息。我们需要对其进行合适的拼接,方便最后可视化。

表格df1表示各国奖牌数,数据是这样的:
在这里插入图片描述
表格df3表示国家名中英文对照表,数据是这样的:
在这里插入图片描述
利用上述两张表,我们可以左连接,将英文名称添加到df1表上。

df4 = pd.merge(df1,df3,on="名称",how="left")
df4.head(10)
  • 1
  • 2

最终效果如下:
在这里插入图片描述
表格df5表示运动项目获奖详情,数据是这样的:
在这里插入图片描述
此时,我们又可以将df4和df5做一个左连接,将这两张表合成一张大表,就可以得到不同国家不同项目获得的奖牌数。

df6 = pd.merge(df4,df5,on="名称",how="left")
df6.head(10)
  • 1
  • 2

最终效果如下:
在这里插入图片描述

② 关于金牌类型的说明

上面得到的表df6,其实还不是最后的表,因为上述表中金牌类型是数字1、2、3,但是我们需要的是金牌、银牌、铜牌。因此,我们自己再定义一个df7。

x = {"获奖名次":["金牌","银牌","铜牌"],"金牌类型":[1,2,3]}
df7 = pd.DataFrame(x)
df7
  • 1
  • 2
  • 3

效果如下:
在这里插入图片描述
因此,我们拿df6与自己构造得到的df7再做一个左连接,就可以的到最后完整的表了。

df8 = pd.merge(df6,df7,on="名称",how="left")
df8.head(10)
  • 1
  • 2

最终效果如下:
在这里插入图片描述

③ 中英文名映射转换

由于使用pyecharts绘制世界地图时,名称必须是英文的,所以我们需要将这里的中文名称映射为英文名称。于是我在网上找到了下面这个文件:
在这里插入图片描述
我们要做的就是将它与表格中的数据,做个映射转换。先把它转换为一个Excel文件吧,方便我们以后直接使用。

with open("国家名中英文对照表.txt","r",encoding="utf-8") as f:
    x = f.read()

df3 = pd.DataFrame()
for i in x.split("\n"):
    x = i.split(":")[0].strip()
    y = i.split(":")[1].strip()
    orangined_data = [[x,y]]
    df3 = df3.append(orangined_data)
df3.columns = ["名称","英文名称"]
df3.to_excel("国家名中英文对照表.xlsx",index=None)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

然后,在和上述的df2表格做一个左连接即可。

df4 = pd.merge(df2,df3,on="名称",how="left")
df4
  • 1
  • 2

结果如下:
在这里插入图片描述

4、可视化展示

关于可视化部分,使用的是pyecharts库。这部分一共分以下8个主题:

  • ① 2020东京奥运会各国奖牌分布图;
  • ② 2020东京奥运会奖牌榜详情;
  • ③ 2020东京奥运会奖牌榜总数前十名;
  • ④ 2020东京奥运会金牌榜总数前十名;
  • ⑤ 2020东京奥运会中国各项目获奖详情;
  • ⑥ 中国选手每日获得奖牌数;
  • ⑦ 中国选手每日获得金牌数;
  • ⑧ 中国选手夺金详细数据;

① 2020东京奥运会各国金牌分布图

在这里插入图片描述

② 2020东京奥运会奖牌榜详情

在这里插入图片描述

③ 2020东京奥运会奖牌榜总数前十名

在这里插入图片描述

④ 2020东京奥运会金牌榜总数前十名

在这里插入图片描述

⑤ 2020东京奥运会中国各项目获奖详情

在这里插入图片描述

⑥ 中国选手每日获得奖牌数

在这里插入图片描述

⑦ 中国选手每日获得金牌数

在这里插入图片描述

⑧ 中国选手夺金详细数据

在这里插入图片描述

⑨ 组合为可视化大屏

在这里插入图片描述
说明: 这里就不做结果分析了,因为通过上图,相信大家应该能够很清晰的了解到2020东京奥运会,哪怕你没看过。

最后,作为一个IT的过来人,我自己整理了一些学习资料,希望对你们有帮助。

在学习python中有任何困难不懂的可以微信扫描下方CSDN官方认证二维码加入python交流学习
多多交流问题,互帮互助,这里有不错的学习教程和开发工具。

python兼职资源+python全套学习资料

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python必备开发工具

在这里插入图片描述

四、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。在这里插入图片描述

六、Python练习题

检查学习结果。
在这里插入图片描述

七、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述
最后,千万别辜负自己当时开始的一腔热血,一起变强大变优秀。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/399801
推荐阅读
相关标签
  

闽ICP备14008679号