赞
踩
Spark是用于大规模数据处理的统一分析引擎。
Spark 最早源于一篇论文 Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,该论文是由加州大学柏克莱分校的 Matei Zaharia 等人发表的。论文中提出了一种弹性分布式数据集(即 RDD)的概念。
RDD是一种分布式内存抽象,其使得程序员能够在大规模集群中做内存运算,并且有一定的容错方式。而这也是整个Spark的核心数据结构,Spark整个平台都围绕着RDD进行。
Spark借鉴了MapReduce思想发展而来,保留了其分布式并行计算的优点并改进了其明显的缺陷。让中间数据存储在内存中提高了运行速度,并提供丰富的操作数据的API提高了开发速度。
hadoop | spark | |
---|---|---|
类型 | 基础平台,包含计算,存储,调度 | 纯计算工具(分布式) |
场景 | 海量数据批处理(磁盘迭代计算) | 海量数据的批处理(内存迭代计算,交互式计算),海量数据流计算,机器学习,图计算 |
价格 | 对机器要求低,便宜 | 对内存有要求,相对较贵 |
编程范式 | Map+Reduce,API较为底层,算法适应性差 | RDD组成DAG有向无环图,API较为顶层,方便使用 |
数据存储结构 | MapReduce中间计算结果在HDFS磁盘上,延迟大 | RDD中间运算结果在内存中,延迟小 |
运行方式 | Task以进程方式维护,任务启动慢 | Task以线程方式维护,任务启动快,可批量创建提高并行能力 |
虽然Spark相对Hadoop而言有较大的优势,但Spark并不能完全代替Hadoop,Spark仅能做计算,而Hadoop生态圈不仅有计算(MapReduce),还有存储(HDFS)和资源管理调度(YARN)。
Hadoop中的MR中每个map/reduce task都是一个java进程方式运行,好处在于进程之间是互相独立的,每个task独享进程资源,没有互相干扰,监控方便,但是问题在于task之间不方便共享数据,执行效率比较低。比如多个map task读取不同数据源文件需要将数据源加载到每个map task中,造成重复加载和浪费内存。而基于线程的方式计算是为了数据共享和提高执行效率,Spark采用了线程的最小的执行单位,但缺点是线程之间会有资源竞争。
由于Apache Spark支持内存计算,并且通过DAG(有向无环图)执行引擎支持无环数据流,所以官方宣称其在内存中的运算速度要比Hadoop的MapReduce快100倍,在硬盘中要快10倍。
Spark处理数据与MapReduce处理数据相比,有如下两个不同点:
Spark支持了包括 Java、Scala、Python 、R和SQL语言在内的多种语言。
在 Spark 的基础上,Spark 还提供了包括Spark SQL、Spark Streaming、MLib 及GraphX在内的多个工具库,我们可以在一个应用中无缝地使用这些工具库。
Spark 支持多种运行方式,包括在 Hadoop 和 Mesos 上,也支持 Standalone的独立运行模式,同时也可以运行在云Kubernetes(Spark 2.3开始支持)上。
对于数据源,Spark 支持从HDFS、HBase、Cassandra 及 Kafka 等多种途径获取数据。
整个Spark 框架模块包含:Spark Core、 Spark SQL、 Spark Streaming、 Spark GraphX、 Spark MLlib,而后四项的能力都是建立在Spark Core之上。
Spark提供多种运行模式,主要包括以下四种:
资源管理层面:
任务计算层面:
Spark中由4类角色组成整个Spark的运行时环境
从资源管理层面划分:
从任务执行层面:
正常情况下Executor是干活的角色,但是在Local模式下,Driver既可以干活又要管理
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。