赞
踩
编写的起因来自于网上大部分的blog要么只介绍了transformer的架构,但是缺乏数据处理的部分;要么实现的库过于陈旧以至于经常报错no module called***;再者就是基于Hungging face 提供的预训练模型,缺乏对tranformer内部架构的展现;还有的就是输出展示都没有不知道能不能跑通。
在查询了一些代码以及论文之后决定编写这篇blog帮助大家入门transformer文本分类任务,手把手保姆级,基于jupyter notebook,每个代码块可以在jupyter notebook中跑通。
其中transformer模型的编写参考地址来自pytorch搭建transformer文本分类
ok, 让我们开始吧
首先下载目标IMDB数据集IMDB数据集地址
解压
打开是一个目录结构长这样的文件
首先定义训练中需要配置的参数
import numpy as np import torch from torch import nn, optim import torch.nn.functional as F from torchtext import data import math import time from torch.autograd import Variable import copy import random from torch import device class Config(object): """配置参数""" def __init__(self): self.model_name = 'Transformer' self.embedding_pretrained = None # 预训练词向量 self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 设备 self.dropout = 0.5 # 随机失活 self.num_classes = 2 # 类别数 self.num_epochs = 200 # epoch数 self.batch_size = 20 # mini-batch大小 self.pad_size = 500 # 每句话处理成的长度(短填长切) self.n_vocab = None#这里需要读取数据的部分进行赋值 self.learning_rate = 5e-4 # 学习率 self.embed = 300 # 词向量维度 self.dim_model = 300 self.hidden = 1024 self.last_hidden = 512 self.num_head = 5 self.num_encoder = 2 self.checkpoint_path = './model.ckpt'
import collections import torchtext import os import random import torch from torchtext.vocab import vocab, GloVe from tqdm import tqdm import torch.nn.functional as F from torch.utils.data import DataLoader, Dataset, TensorDataset from torch import device torch.manual_seed(1234) class ImdbDataset(Dataset): def __init__( self, folder_path="./aclImdb", is_train=True, is_small=False ) -> None: super().__init__() self.data, self.labels = self.read_dataset(folder_path, is_train, is_small) # 读取数据 def read_dataset( self, folder_path, is_train, small ): data, labels = [], [] for label in ("pos", "neg"): folder_name = os.path.join( folder_path, "train" if is_train else "test", label ) for file in tqdm(os.listdir(folder_name)): with open(os.path.join(folder_name, file), "rb") as f: text = f.read().decode("utf-8").replace("\n", "").lower() data.append(text) labels.append(1 if label == "pos" else 0) # random.shuffle(data) # random.shuffle(labels) # 小样本训练,仅用于本机验证 return data, labels def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index], int(self.labels[index]) def get_data(self): return self.data def get_labels(self): return self.labels def get_tokenized(data): """获取数据集的词元列表""" def tokenizer(text): return [tok.lower() for tok in text.split(" ")] return [tokenizer(review) for review in data] def get_vocab(data): """获取数据集的词汇表""" tokenized_data = get_tokenized(data) counter = collections.Counter([tk for st in tokenized_data for tk in st]) # 将min_freq设置为5,确保仅包括至少出现5次的单词 vocab_freq = {"<UNK>": 0, "<PAD>": 1} # 添加满足词频条件的单词到词汇表,并分配索引 for word, freq in counter.items(): if freq >= 5: vocab_freq[word] = len(vocab_freq) # 构建词汇表对象并返回 return vocab(vocab_freq) def preprocess_imdb(train_data, vocab,config): """数据预处理,将数据转换成神经网络的输入形式""" max_l = config.pad_size # 将每条评论通过截断或者补0,使得长度变成500 def pad(x): return x[:max_l] if len(x) > max_l else x + [1] * (max_l - len(x)) labels = train_data.get_labels() tokenized_data = get_tokenized(train_data.get_data()) vocab_dict = vocab.get_stoi() features = torch.tensor( [pad([vocab_dict.get(word, 0) for word in words]) for words in tokenized_data] ) labels = torch.tensor([label for label in labels]) return features, labels def load_data(config): """加载数据集""" train_data = ImdbDataset(folder_path="./aclImdb", is_train=True) test_data = ImdbDataset(folder_path="./aclImdb", is_train=False) print("输出第一句话:") print(train_data.__getitem__(1)) vocab = get_vocab(train_data.get_data()) train_set = TensorDataset(*preprocess_imdb(train_data, vocab,config)) print("输出第一句话字典编码表示以及序列长度:") print(train_set.__getitem__(1),train_set.__getitem__(1)[0].shape) # 20%作为验证集 # train_set, valid_set = torch.utils.data.random_split( # train_set, [int(len(train_set) * 0.8), int(len(train_set) * 0.2)] # ) test_set = TensorDataset(*preprocess_imdb(test_data, vocab,config)) print(f"训练集大小{train_set.__len__()}") print(f"测试集大小{test_set.__len__()}") print(f"词表中单词个数:{len(vocab)}") train_iter = DataLoader( train_set, batch_size=config.batch_size, shuffle=True, num_workers=0 ) # valid_iter = DataLoader(valid_set, batch_size) test_iter = DataLoader(test_set, config.batch_size) return train_iter, test_iter, vocab # train_data = ImdbDataset(is_train=True ) # test_data = ImdbDataset(is_train=False) # vocab = get_vocab(train_data.get_data()) # print(f"词表中单词个数:{len(vocab)}") # len_vocab=len(vocab) # train_set = TensorDataset(*preprocess_imdb(train_data, vocab)) # test_set = TensorDataset(*preprocess_imdb(test_data, vocab)) # train_dataloader = DataLoader( # train_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=0 # ) # test_dataloader = DataLoader(test_set, batch_size=BATCH_SIZE) # load_data(config=Config())
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import copy '''Attention Is All You Need''' class Model(nn.Module): def __init__(self, config): super(Model, self).__init__() if config.embedding_pretrained is not None: self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False) else: self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1) self.postion_embedding = Positional_Encoding(config.embed, config.pad_size, config.dropout, config.device) self.encoder = Encoder(config.dim_model, config.num_head, config.hidden, config.dropout) self.encoders = nn.ModuleList([ copy.deepcopy(self.encoder) # Encoder(config.dim_model, config.num_head, config.hidden, config.dropout) for _ in range(config.num_encoder)]) self.fc1 = nn.Linear(config.pad_size * config.dim_model, config.num_classes) # self.fc2 = nn.Linear(config.last_hidden, config.num_classes) # self.fc1 = nn.Linear(config.dim_model, config.num_classes) def forward(self, x): out = self.embedding(x) #return out out = self.postion_embedding(out) for encoder in self.encoders: out = encoder(out) out = out.view(out.size(0), -1) # out = torch.mean(out, 1) out = self.fc1(out) return out class Encoder(nn.Module): def __init__(self, dim_model, num_head, hidden, dropout): super(Encoder, self).__init__() self.attention = Multi_Head_Attention(dim_model, num_head, dropout) self.feed_forward = Position_wise_Feed_Forward(dim_model, hidden, dropout) def forward(self, x): out = self.attention(x) out = self.feed_forward(out) return out class Positional_Encoding(nn.Module): def __init__(self, embed, pad_size, dropout, device): super(Positional_Encoding, self).__init__() self.device = device self.pe = torch.tensor([[pos / (10000.0 ** (i // 2 * 2.0 / embed)) for i in range(embed)] for pos in range(pad_size)]) self.pe[:, 0::2] = np.sin(self.pe[:, 0::2]) self.pe[:, 1::2] = np.cos(self.pe[:, 1::2]) self.dropout = nn.Dropout(dropout) def forward(self, x): out = x + nn.Parameter(self.pe, requires_grad=False).to(self.device) out = self.dropout(out) return out class Scaled_Dot_Product_Attention(nn.Module): '''Scaled Dot-Product Attention ''' def __init__(self): super(Scaled_Dot_Product_Attention, self).__init__() def forward(self, Q, K, V, scale=None): ''' Args: Q: [batch_size, len_Q, dim_Q] K: [batch_size, len_K, dim_K] V: [batch_size, len_V, dim_V] scale: 缩放因子 论文为根号dim_K Return: self-attention后的张量,以及attention张量 ''' attention = torch.matmul(Q, K.permute(0, 2, 1)) if scale: attention = attention * scale # if mask: # TODO change this # attention = attention.masked_fill_(mask == 0, -1e9) attention = F.softmax(attention, dim=-1) context = torch.matmul(attention, V) return context class Multi_Head_Attention(nn.Module): def __init__(self, dim_model, num_head, dropout=0.0): super(Multi_Head_Attention, self).__init__() self.num_head = num_head assert dim_model % num_head == 0 self.dim_head = dim_model // self.num_head self.fc_Q = nn.Linear(dim_model, num_head * self.dim_head) self.fc_K = nn.Linear(dim_model, num_head * self.dim_head) self.fc_V = nn.Linear(dim_model, num_head * self.dim_head) self.attention = Scaled_Dot_Product_Attention() self.fc = nn.Linear(num_head * self.dim_head, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): batch_size = x.size(0) Q = self.fc_Q(x) K = self.fc_K(x) V = self.fc_V(x) Q = Q.view(batch_size * self.num_head, -1, self.dim_head) K = K.view(batch_size * self.num_head, -1, self.dim_head) V = V.view(batch_size * self.num_head, -1, self.dim_head) # if mask: # TODO # mask = mask.repeat(self.num_head, 1, 1) # TODO change this scale = K.size(-1) ** -0.5 # 缩放因子 context = self.attention(Q, K, V, scale) context = context.view(batch_size, -1, self.dim_head * self.num_head) out = self.fc(context) out = self.dropout(out) out = out + x # 残差连接 out = self.layer_norm(out) return out class Position_wise_Feed_Forward(nn.Module): def __init__(self, dim_model, hidden, dropout=0.0): super(Position_wise_Feed_Forward, self).__init__() self.fc1 = nn.Linear(dim_model, hidden) self.fc2 = nn.Linear(hidden, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): out = self.fc1(x) out = F.relu(out) out = self.fc2(out) out = self.dropout(out) out = out + x # 残差连接 out = self.layer_norm(out) return out
#--------------------------------------------------- import pandas as pd from collections import Counter import pandas as pd import torch.nn as nn import torch.nn.functional as F import numpy as np import torch from torch import autograd import os from tqdm import tqdm # 预先定义配置 config = Config() train_data,test_data,vocabs_size = load_data(config)#加载数据 config.n_vocab = len(vocabs_size) + 1#补充词表大小,词表一定要多留出来一个 model = Model(config)#调用transformer的编码器 model.cuda() optimizer = torch.optim.Adam(model.parameters(),lr=config.learning_rate) criterion = nn.CrossEntropyLoss()#多分类的任务 batch_size=config.batch_size # 记录训练过程的数据 epoch_loss_values = [] metric_values = [] best_acc = 0.0 for epoch in range(config.num_epochs): train_acc = 0.0 train_loss = 0.0 val_acc = 0.0 val_loss = 0.0 # training model.train() for i,train_idx in enumerate(tqdm(train_data)): features, labels = train_idx features = features.cuda() labels = labels.cuda() optimizer.zero_grad() outputs = model(features) loss = criterion(outputs, labels) loss.backward() optimizer.step() _, train_pred = torch.max(outputs, 1) # get the index of the class with the highest probability train_acc += (train_pred.detach() == labels.detach()).sum().item() train_loss += loss.item() model.eval() # set the model to evaluation mode with torch.no_grad(): for i, batch in enumerate(tqdm(test_data)): features, labels = batch features = features.cuda() labels = labels.cuda() outputs = model(features) loss = criterion(outputs, labels) _, val_pred = torch.max(outputs, 1) val_acc += (val_pred.cpu() == labels.cpu()).sum().item() # get the index of the class with the highest probability val_loss += loss.item() print(f'训练信息:[{epoch+1:03d}/{config.num_epochs:03d}] Train Acc: {train_acc/25000:3.5f} Loss: {train_loss/len(train_data):3.5f} | Val Acc: {val_acc/25000:3.5f} loss: {val_loss/len(test_data):3.5f}') epoch_loss_values.append(train_loss/len(train_data)) metric_values.append(val_acc/25000) if val_acc > best_acc: best_acc = val_acc torch.save(model.state_dict(), config.checkpoint_path) print(f'saving model with acc {best_acc/25000:.5f}')
观察输出训练中的数据发现:在训练到大约第50轮的时候产生过拟合现象,故第100个epoch的时候停止训练,并保存了在验证集上表现最好的模型参数
# 画出训练过程中的损失曲线以及准确率曲线 import matplotlib.pyplot as plt plt.figure("train", (12, 6)) plt.subplot(1, 2, 1) plt.title("Iteration Average Loss") x = [ (i + 1) for i in range(len(epoch_loss_values))] y = epoch_loss_values plt.xlabel("Iteration") plt.plot(x, y) plt.subplot(1, 2, 2) plt.title("Val Mean Dice") x = [(i + 1) for i in range(len(metric_values))] y = metric_values plt.xlabel("Iteration") plt.plot(x, y) plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。