赞
踩
上图架构以 batch_size 为 1,两个时间步的 X 为例子,计算过程如下:
根据 self-attention 的模型结构,改变 X 的输入顺序,不影响 attention 的结果,所以还需要引入额外的位置信息,即位置编码。
图里计算机二进制编码的低位和位置编码矩阵的前面几列对应。
除了上面捕获绝对位置信息之外,上述的位置编码还允许模型学习得到输入序列中相对位置信息。 这是因为对于任何确定的位置偏移δ,位置 i+δ 处的位置编码可以线性投影位置 i 处的位置编码来表示。
- #@save
- class PositionalEncoding(nn.Module):
- """位置编码"""
- def __init__(self, num_hiddens, dropout, max_len=1000):
- super(PositionalEncoding, self).__init__()
- self.dropout = nn.Dropout(dropout)
- # 创建一个足够长的P
- self.P = torch.zeros((1, max_len, num_hiddens))
- X = torch.arange(max_len, dtype=torch.float32).reshape(
- -1, 1) / torch.pow(10000, torch.arange(
- 0, num_hiddens, 2, dtype=torch.float32) / num_hiddens)
- self.P[:, :, 0::2] = torch.sin(X)
- self.P[:, :, 1::2] = torch.cos(X)
-
- def forward(self, X):
- X = X + self.P[:, :X.shape[1], :].to(X.device)
- return self.dropout(X)
两头注意力
七头注意力
添加图片注释,不超过 140 字(可选)
七头注意力连接进行信息融合
掩码多头注意力
和多头注意力是一样的,只不过每个头的 self-attention 变成了 masked self-attention
- import math
- import torch
- from torch import nn
- from d2l import torch as d2l
-
- #@save
- def transpose_qkv(X, num_heads):
- """为了多注意力头的并行计算而变换形状"""
- # 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
- # 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,
- # num_hiddens/num_heads)
- X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)
-
- # 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,
- # num_hiddens/num_heads)
- X = X.permute(0, 2, 1, 3)
-
- # 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,
- # num_hiddens/num_heads)
- return X.reshape(-1, X.shape[2], X.shape[3])
-
-
- #@save
- def transpose_output(X, num_heads):
- """逆转transpose_qkv函数的操作"""
- X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
- X = X.permute(0, 2, 1, 3)
- return X.reshape(X.shape[0], X.shape[1], -1)
-
- #@save
- class DotProductAttention(nn.Module):
- """Scaled dot product attention.
- Defined in :numref:`subsec_additive-attention`"""
- def __init__(self, dropout, **kwargs):
- super(DotProductAttention, self).__init__(**kwargs)
- self.dropout = nn.Dropout(dropout)
-
- # Shape of `queries`: (`batch_size`, no. of queries, `d`)
- # Shape of `keys`: (`batch_size`, no. of key-value pairs, `d`)
- # Shape of `values`: (`batch_size`, no. of key-value pairs, value
- # dimension)
- # Shape of `valid_lens`: (`batch_size`,) or (`batch_size`, no. of queries)
- def forward(self, queries, keys, values, valid_lens=None):
- d = queries.shape[-1]
- # Set `transpose_b=True` to swap the last two dimensions of `keys`
- scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
- self.attention_weights = masked_softmax(scores, valid_lens)
- return torch.bmm(self.dropout(self.attention_weights), values)
-
- #@save
- class MultiHeadAttention(nn.Module):
- """多头注意力"""
- def __init__(self, key_size, query_size, value_size, num_hiddens,
- num_heads, dropout, bias=False, **kwargs):
- super(MultiHeadAttention, self).__init__(**kwargs)
- self.num_heads = num_heads
- self.attention = d2l.DotProductAttention(dropout)
- self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
- self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
- self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
- self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)
-
- def forward(self, queries, keys, values, valid_lens):
- # queries,keys,values的形状:
- # (batch_size,查询或者“键-值”对的个数,num_hiddens)
- # valid_lens 的形状:
- # (batch_size,)或(batch_size,查询的个数)
- # 经过变换后,输出的queries,keys,values 的形状:
- # (batch_size*num_heads,查询或者“键-值”对的个数,
- # num_hiddens/num_heads)
- queries = transpose_qkv(self.W_q(queries), self.num_heads)
- keys = transpose_qkv(self.W_k(keys), self.num_heads)
- values = transpose_qkv(self.W_v(values), self.num_heads)
-
- if valid_lens is not None:
- # 在轴0,将第一项(标量或者矢量)复制num_heads次,
- # 然后如此复制第二项,然后诸如此类。
- valid_lens = torch.repeat_interleave(
- valid_lens, repeats=self.num_heads, dim=0)
-
- # output的形状:(batch_size*num_heads,查询的个数,
- # num_hiddens/num_heads)
- output = self.attention(queries, keys, values, valid_lens)
-
- # output_concat的形状:(batch_size,查询的个数,num_hiddens)
- output_concat = transpose_output(output, self.num_heads)
- return self.W_o(output_concat)
- import math
- import pandas as pd
- import torch
- from torch import nn
- from d2l import torch as d2l
-
- #@save
- class PositionWiseFFN(nn.Module):
- """基于位置的前馈网络"""
- def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
- **kwargs):
- super(PositionWiseFFN, self).__init__(**kwargs)
- self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
- self.relu = nn.ReLU()
- self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
-
- def forward(self, X):
- return self.dense2(self.relu(self.dense1(X)))
-
- #@save
- class AddNorm(nn.Module):
- """残差连接后进行层规范化"""
- def __init__(self, normalized_shape, dropout, **kwargs):
- super(AddNorm, self).__init__(**kwargs)
- self.dropout = nn.Dropout(dropout)
- self.ln = nn.LayerNorm(normalized_shape)
-
- def forward(self, X, Y):
- return self.ln(self.dropout(Y) + X)
-
- #@save
- class EncoderBlock(nn.Module):
- """Transformer编码器块"""
- def __init__(self, key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
- dropout, use_bias=False, **kwargs):
- super(EncoderBlock, self).__init__(**kwargs)
- self.attention = d2l.MultiHeadAttention(
- key_size, query_size, value_size, num_hiddens, num_heads, dropout,
- use_bias)
- self.addnorm1 = AddNorm(norm_shape, dropout)
- self.ffn = PositionWiseFFN(
- ffn_num_input, ffn_num_hiddens, num_hiddens)
- self.addnorm2 = AddNorm(norm_shape, dropout)
-
- def forward(self, X, valid_lens):
- Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
- return self.addnorm2(Y, self.ffn(Y))
-
- #@save
- class TransformerEncoder(d2l.Encoder):
- """Transformer编码器"""
- def __init__(self, vocab_size, key_size, query_size, value_size,
- num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
- num_heads, num_layers, dropout, use_bias=False, **kwargs):
- super(TransformerEncoder, self).__init__(**kwargs)
- self.num_hiddens = num_hiddens
- self.embedding = nn.Embedding(vocab_size, num_hiddens)
- self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
- self.blks = nn.Sequential()
- for i in range(num_layers):
- self.blks.add_module("block"+str(i),
- EncoderBlock(key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens,
- num_heads, dropout, use_bias))
-
- def forward(self, X, valid_lens, *args):
- # 因为位置编码值在-1和1之间,
- # 因此嵌入值乘以嵌入维度的平方根进行缩放,
- # 然后再与位置编码相加。
- X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
- self.attention_weights = [None] * len(self.blks)
- for i, blk in enumerate(self.blks):
- X = blk(X, valid_lens)
- self.attention_weights[
- i] = blk.attention.attention.attention_weights
- return X
-
- class DecoderBlock(nn.Module):
- """解码器中第i个块"""
- def __init__(self, key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
- dropout, i, **kwargs):
- super(DecoderBlock, self).__init__(**kwargs)
- self.i = i
- self.attention1 = d2l.MultiHeadAttention(
- key_size, query_size, value_size, num_hiddens, num_heads, dropout)
- self.addnorm1 = AddNorm(norm_shape, dropout)
- self.attention2 = d2l.MultiHeadAttention(
- key_size, query_size, value_size, num_hiddens, num_heads, dropout)
- self.addnorm2 = AddNorm(norm_shape, dropout)
- self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens,
- num_hiddens)
- self.addnorm3 = AddNorm(norm_shape, dropout)
-
- def forward(self, X, state):
- enc_outputs, enc_valid_lens = state[0], state[1]
- # 训练阶段,输出序列的所有词元都在同一时间处理,
- # 因此state[2][self.i]初始化为None。
- # 预测阶段,输出序列是通过词元一个接着一个解码的,
- # 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示
- if state[2][self.i] is None:
- key_values = X
- else:
- key_values = torch.cat((state[2][self.i], X), axis=1)
- state[2][self.i] = key_values
- if self.training:
- batch_size, num_steps, _ = X.shape
- # dec_valid_lens的开头:(batch_size,num_steps),
- # 其中每一行是[1,2,...,num_steps]
- dec_valid_lens = torch.arange(
- 1, num_steps + 1, device=X.device).repeat(batch_size, 1)
- else:
- dec_valid_lens = None
-
- # 自注意力
- X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
- Y = self.addnorm1(X, X2)
- # 编码器-解码器注意力。
- # enc_outputs的开头:(batch_size,num_steps,num_hiddens)
- Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)
- Z = self.addnorm2(Y, Y2)
- return self.addnorm3(Z, self.ffn(Z)), state
-
- class TransformerDecoder(d2l.AttentionDecoder):
- def __init__(self, vocab_size, key_size, query_size, value_size,
- num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
- num_heads, num_layers, dropout, **kwargs):
- super(TransformerDecoder, self).__init__(**kwargs)
- self.num_hiddens = num_hiddens
- self.num_layers = num_layers
- self.embedding = nn.Embedding(vocab_size, num_hiddens)
- self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
- self.blks = nn.Sequential()
- for i in range(num_layers):
- self.blks.add_module("block"+str(i),
- DecoderBlock(key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens,
- num_heads, dropout, i))
- self.dense = nn.Linear(num_hiddens, vocab_size)
-
- def init_state(self, enc_outputs, enc_valid_lens, *args):
- return [enc_outputs, enc_valid_lens, [None] * self.num_layers]
-
- def forward(self, X, state):
- X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
- self._attention_weights = [[None] * len(self.blks) for _ in range (2)]
- for i, blk in enumerate(self.blks):
- X, state = blk(X, state)
- # 解码器自注意力权重
- self._attention_weights[0][
- i] = blk.attention1.attention.attention_weights
- # “编码器-解码器”自注意力权重
- self._attention_weights[1][
- i] = blk.attention2.attention.attention_weights
- return self.dense(X), state
-
- @property
- def attention_weights(self):
- return self._attention_weights
-
- num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
- lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
- ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
- key_size, query_size, value_size = 32, 32, 32
- norm_shape = [32]
-
- train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
-
- encoder = TransformerEncoder(
- len(src_vocab), key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
- num_layers, dropout)
- decoder = TransformerDecoder(
- len(tgt_vocab), key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
- num_layers, dropout)
- net = d2l.EncoderDecoder(encoder, decoder)
- d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
bert 开启了预训练模型的风潮,使用了带掩码的语言模型,具体就是通过大量的数据,模型获取了语言信息抽取的能力,从而可以通过 fine-tune 应用到各种 NLP 任务上。
3w 的词典,使用了 WordPiece。[cls] A [seq] B [seq]
位置嵌入换成了学习的矩阵。
截取了 transformer 的 encoder(代码没有改动)
不同点:
输入
训练(类似完形填空,以及下一个句子预测)
尽管掩蔽语言建模能够编码双向上下文来表示单词,但它不能显式地建模文本对之间的逻辑关系。为了帮助理解两个文本序列之间的关系,BERT在预训练中考虑了一个二元分类任务——下一句预测。在为预训练生成句子对时,有一半的时间它们确实是标签为“真”的连续句子;在另一半的时间里,第二个句子是从语料库中随机抽取的,标记为“假”。
BERT-base(H = 768,L = 12,A = 12)
Transformer encoder block 里面主要参数有:
嵌入层:H x 30000(vocab_size 约等于 30000)
2. 全连接层:H x 4H + 4H x H(一个 block 里面有两个全连接层)
3. 多头注意力机制层:H x H / head_num x 3(一个头的参数,3代表 Q,K,V 用不同矩阵做线性变换),所有头加起来 H x H x 3,再加上多头注意力机制层的线性变换 H x H,这里可以结合下图理解:
添加图片注释,不超过 140 字(可选)
1,2,3 加起来就是 BERT-base 的参数数量。
计算公式:
BERT-large 同理可以计算出参数数量约等于 340M。
截取了 transformer 的 decoder(代码没有改动)
51 序列模型【动手学深度学习v2】-跟李沐学AI-【完结】动手学深度学习 PyTorch版-哔哩哔哩视频
8.1. 序列模型 - 动手学深度学习 2.0.0 documentation
Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models With Attention)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。