赞
踩
- vector是表示可变大小数组的序列容器。
- 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
- 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
- vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
- 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
- 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。
使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学习
vector学习时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的。
// 测试vector的默认扩容机制 void TestVectorExpand() { size_t sz; vector<int> v; sz = v.capacity(); cout << "making v grow:\n"; for (int i = 0; i < 100; ++i) { v.push_back(i); if (sz != v.capacity()) { sz = v.capacity(); cout << "capacity changed: " << sz << '\n'; } } } vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容 making foo grow : capacity changed : 1 capacity changed : 2 capacity changed : 3 capacity changed : 4 capacity changed : 6 capacity changed : 9 capacity changed : 13 capacity changed : 19 capacity changed : 28 capacity changed : 42 capacity changed : 63 capacity changed : 94 capacity changed : 141 g++运行结果:linux下使用的STL基本是按照2倍方式扩容 making foo grow : capacity changed : 1 capacity changed : 2 capacity changed : 4 capacity changed : 8 capacity changed : 16 capacity changed : 32 capacity changed : 64 capacity changed : 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够 // 就可以避免边插入边扩容导致效率低下的问题了 void TestVectorExpandOP() { vector<int> v; size_t sz = v.capacity(); v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容 cout << "making bar grow:\n"; for (int i = 0; i < 100; ++i) { v.push_back(i); if (sz != v.capacity()) { sz = v.capacity(); cout << "capacity changed: " << sz << '\n'; } } }
迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。
对于vector可能会导致其迭代器失效的操作有:
会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、
push_back等。#include <iostream> using namespace std; #include <vector> int main() { vector<int> v{ 1,2,3,4,5,6 }; auto it = v.begin(); // 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容 // v.resize(100, 8); // reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变 // v.reserve(100); // 插入元素期间,可能会引起扩容,而导致原空间被释放 // v.insert(v.begin(), 0); // v.push_back(8); // 给vector重新赋值,可能会引起底层容量改变 v.assign(100, 8); /* 出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉, 而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的 空间,而引起代码运行时崩溃。 解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新 赋值即可。 */ while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; return 0; }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
指定位置元素的删除操作–erase
#include <iostream> using namespace std; #include <vector> int main() { int a[] = { 1, 2, 3, 4 }; vector<int> v(a, a + sizeof(a) / sizeof(int)); // 使用find查找3所在位置的iterator vector<int>::iterator pos = find(v.begin(), v.end(), 3); // 删除pos位置的数据,导致pos迭代器失效。 v.erase(pos); cout << *pos << endl; // 此处会导致非法访问 return 0; }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。
以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?
#include <iostream> using namespace std; #include <vector> int main()//不可以,it会越界 { vector<int> v{ 1, 2, 3, 4 }; auto it = v.begin(); while (it != v.end()) { if (*it % 2 == 0) v.erase(it); ++it; } return 0; } int main()//Linux,vs和缩容的场景都可以 { vector<int> v{ 1, 2, 3, 4 }; auto it = v.begin(); while (it != v.end()) { if (*it % 2 == 0) it = v.erase(it); else ++it; } return 0; }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
第一种错误原因:
写法一所有可能的情况
注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。
// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了 int main() { vector<int> v{ 1,2,3,4,5 }; for (size_t i = 0; i < v.size(); ++i) cout << v[i] << " "; cout << endl; auto it = v.begin(); cout << "扩容之前,vector的容量为: " << v.capacity() << endl; // 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 v.reserve(100); cout << "扩容之后,vector的容量为: " << v.capacity() << endl; // 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会 // 虽然可能运行,但是输出的结果是不对的 while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; return 0; } 程序输出: 1 2 3 4 5 扩容之前,vector的容量为: 5 扩容之后,vector的容量为 : 100 0 2 3 4 5 409 1 2 3 4 5 // 2. erase删除任意位置代码后,linux下迭代器并没有失效 // 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的 #include <vector> #include <algorithm> int main() { vector<int> v{ 1,2,3,4,5 }; vector<int>::iterator it = find(v.begin(), v.end(), 3); v.erase(it); cout << *it << endl; while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; return 0; } 程序可以正常运行,并打印: 4 4 5 // 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end // 此时迭代器是无效的,++it导致程序崩溃 int main() { vector<int> v{ 1,2,3,4,5 }; // vector<int> v{1,2,3,4,5,6}; auto it = v.begin(); while (it != v.end()) { if (*it % 2 == 0) v.erase(it); ++it; } for (auto e : v) cout << e << " "; cout << endl; return 0; } ======================================================== // 使用第一组数据时,程序可以运行 [sly@VM - 0 - 3 - centos 20220114]$ g++ testVector.cpp - std = c++11 [sly@VM - 0 - 3 - centos 20220114]$ . / a.out 1 3 5 ======================================================== = // 使用第二组数据时,程序最终会崩溃 [sly@VM - 0 - 3 - centos 20220114]$ vim testVector.cpp [sly@VM - 0 - 3 - centos 20220114]$ g++ testVector.cpp - std = c++11 [sly@VM - 0 - 3 - centos 20220114]$ . / a.out Segmentation fault
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在begin和end范围内,肯定会崩溃的。
与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效
#include <string> void TestString() { string s("hello"); auto it = s.begin(); // 放开之后代码会崩溃,因为resize到20会string会进行扩容 // 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了 // 后序打印时,再访问it指向的空间程序就会崩溃 //s.resize(20, '!'); while (it != s.end()) { cout << *it; ++it; } cout << endl; it = s.begin(); while (it != s.end()) { it = s.erase(it); // 按照下面方式写,运行时程序会崩溃,因为erase(it)之后 // it位置的迭代器就失效了 // s.erase(it); ++it; } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
迭代器失效解决办法:在使用前,对迭代器重新赋值即可。
假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?
int main() { bite::vector<bite::string> v; v.push_back("1111"); v.push_back("2222"); v.push_back("3333"); return 0; }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
问题分析:
memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。
结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。
// 以杨慧三角的前n行为例:假设n为5 void test2vector(size_t n) { // 使用vector定义二维数组vv,vv中的每个元素都是vector<int> bit::vector<bit::vector<int>> vv(n); // 将二维数组每一行中的vecotr<int>中的元素全部设置为1 for (size_t i = 0; i < n; ++i) vv[i].resize(i + 1, 1); // 给杨慧三角出第一列和对角线的所有元素赋值 for (int i = 2; i < n; ++i) { for (int j = 1; j < i; ++j) { vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1]; } } }
bit::vector<bit::vector<int>> vv(n);
构造一个vv动态二维数组,vv中总共有n个元素,每个元素都是vector类型的,每行没有包含任何元素,如果n为5时如下所示:
vv中元素填充完成之后,如下图所示:
使用标准库中vector构建动态二维数组时与上图实际是一致的。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。