当前位置:   article > 正文

C++初阶:7.vector

C++初阶:7.vector

vector

一.vector的介绍及使用

1. vector的介绍

vector的文档介绍

  1. vector是表示可变大小数组的序列容器。
  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。

使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学习

2. vector的使用

vector学习时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的

(1).vector的定义

image-20240409211551137

vector的构造代码演示

(2).vector iterator 的使用

image-20240410184606139

image-20240410184620393

vectot的迭代器使用代码演示

(3).vector 空间增长问题

image-20240410185129026

  • capacity的代码在vs和g++下分别运行会发现,**vs下capacity是按1.5倍增长的,g++是按2倍增长的。**这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
  • resize在开空间的同时还会进行初始化,影响size。
// 测试vector的默认扩容机制
void TestVectorExpand()
{
	size_t sz;
	vector<int> v;
	sz = v.capacity();
	cout << "making v grow:\n";
	for (int i = 0; i < 100; ++i)
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}
vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow :
capacity changed : 1
capacity changed : 2
capacity changed : 3
capacity changed : 4
capacity changed : 6
capacity changed : 9
capacity changed : 13
capacity changed : 19
capacity changed : 28
capacity changed : 42
capacity changed : 63
capacity changed : 94
capacity changed : 141
g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow :
capacity changed : 1
capacity changed : 2
capacity changed : 4
capacity changed : 8
capacity changed : 16
capacity changed : 32
capacity changed : 64
capacity changed : 128
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{
	vector<int> v;
	size_t sz = v.capacity();
	v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
	cout << "making bar grow:\n";
	for (int i = 0; i < 100; ++i)
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

vector容量接口使用代码演示

(4).vector 增删查改

image-20240410185552196

image-20240411213731996

vector插入和删除操作代码演示

(5). vector 迭代器失效问题。(重点)

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

对于vector可能会导致其迭代器失效的操作有:

  1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、
    push_back等。

    #include <iostream>
    using namespace std;
    #include <vector>
    int main()
    {
    	vector<int> v{ 1,2,3,4,5,6 };
    
    	auto it = v.begin();
    
    	// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
    	// v.resize(100, 8);
    
    	// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
    	// v.reserve(100);
    
    	// 插入元素期间,可能会引起扩容,而导致原空间被释放
    	// v.insert(v.begin(), 0);
    	// v.push_back(8);
    
    	// 给vector重新赋值,可能会引起底层容量改变
    	v.assign(100, 8);
    
    	/*
    	出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
       而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
       空间,而引起代码运行时崩溃。
    	解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
       赋值即可。
    	*/
    	while (it != v.end())
    	{
    		cout << *it << " ";
    		++it;
    	}
    	cout << endl;
    	return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
  2. 指定位置元素的删除操作erase

    image-20240411214104270

    #include <iostream>
    using namespace std;
    #include <vector>
    int main()
    {
    	int a[] = { 1, 2, 3, 4 };
    	vector<int> v(a, a + sizeof(a) / sizeof(int));
    	// 使用find查找3所在位置的iterator
    	vector<int>::iterator pos = find(v.begin(), v.end(), 3);
    	// 删除pos位置的数据,导致pos迭代器失效。
    	v.erase(pos);
    	cout << *pos << endl; // 此处会导致非法访问
    	return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。

    以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?

    #include <iostream>
    using namespace std;
    #include <vector>
    int main()//不可以,it会越界
    {
    	vector<int> v{ 1, 2, 3, 4 };
    	auto it = v.begin();
    	while (it != v.end())
    	{
    		if (*it % 2 == 0)
    			v.erase(it);
    		++it;
    	}
    
    	return 0;
    }
    int main()//Linux,vs和缩容的场景都可以
    {
    	vector<int> v{ 1, 2, 3, 4 };
    	auto it = v.begin();
    	while (it != v.end())
    	{
    		if (*it % 2 == 0)
    			it = v.erase(it);
    		else
    			++it;
    	}
    	return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    第一种错误原因:

    image-20240411214414069

    写法一所有可能的情况

    image-20240411214543262

  3. 注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

    // 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
    int main()
    {
    	vector<int> v{ 1,2,3,4,5 };
    	for (size_t i = 0; i < v.size(); ++i)
    		cout << v[i] << " ";
    	cout << endl;
    	auto it = v.begin();
    	cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
    	// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 
    	v.reserve(100);
    	cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
    
    	// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
    	// 虽然可能运行,但是输出的结果是不对的
    	while (it != v.end())
    	{
    		cout << *it << " ";
    		++it;
    	}
    	cout << endl;
    	return 0;
    }
    程序输出:
    1 2 3 4 5
    扩容之前,vector的容量为: 5
    扩容之后,vector的容量为 : 100
    0 2 3 4 5 409 1 2 3 4 5
    // 2. erase删除任意位置代码后,linux下迭代器并没有失效
    // 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
    #include <vector>
    #include <algorithm>
    int main()
    {
    	vector<int> v{ 1,2,3,4,5 };
    	vector<int>::iterator it = find(v.begin(), v.end(), 3);
    	v.erase(it);
    	cout << *it << endl;
    	while (it != v.end())
    	{
    		cout << *it << " ";
    		++it;
    	}
    	cout << endl;
    	return 0;
    }
    程序可以正常运行,并打印:
    4
    4 5
    
    // 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
    // 此时迭代器是无效的,++it导致程序崩溃
    int main()
    {
    	vector<int> v{ 1,2,3,4,5 };
    	// vector<int> v{1,2,3,4,5,6};
    	auto it = v.begin();
    	while (it != v.end())
    	{
    		if (*it % 2 == 0)
    			v.erase(it);
    		++it;
    	}
    	for (auto e : v)
    		cout << e << " ";
    	cout << endl;
    	return 0;
    }
    ========================================================
    // 使用第一组数据时,程序可以运行
    [sly@VM - 0 - 3 - centos 20220114]$ g++ testVector.cpp - std = c++11
    [sly@VM - 0 - 3 - centos 20220114]$ . / a.out
    1 3 5
    ======================================================== =
    // 使用第二组数据时,程序最终会崩溃
    [sly@VM - 0 - 3 - centos 20220114]$ vim testVector.cpp
    [sly@VM - 0 - 3 - centos 20220114]$ g++ testVector.cpp - std = c++11
    [sly@VM - 0 - 3 - centos 20220114]$ . / a.out
    Segmentation fault
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79

    从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在begin和end范围内,肯定会崩溃的。

  4. 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效

    #include <string>
    void TestString()
    {
    	string s("hello");
    	auto it = s.begin();
    	// 放开之后代码会崩溃,因为resize到20会string会进行扩容
    	// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
    	// 后序打印时,再访问it指向的空间程序就会崩溃
    	//s.resize(20, '!');
    	while (it != s.end())
    	{
    		cout << *it;
    		++it;
    	}
    	cout << endl;
    	it = s.begin();
    	while (it != s.end())
    	{
    		it = s.erase(it);
    		// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
    		// it位置的迭代器就失效了
    		// s.erase(it); 
    		++it;
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

迭代器失效解决办法:在使用前,对迭代器重新赋值即可。

二.vector深度剖析及模拟实现

  • 前置知识

image-20240411215209408

image-20240411215307643

1. std::vector的核心框架接口的模拟实现bit::vector

vector的模拟实现

2. 使用memcpy拷贝问题

假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?

int main()
{
	bite::vector<bite::string> v;
	v.push_back("1111");
	v.push_back("2222");
	v.push_back("3333");
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

问题分析:

  1. memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中

  2. 如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。

    image-20240411220056800

    image-20240411220105578

    image-20240411220117193

    image-20240411220133913

    结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。

3. 动态二维数组理解

// 以杨慧三角的前n行为例:假设n为5
void test2vector(size_t n)
{
	// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>	
	bit::vector<bit::vector<int>> vv(n);

	// 将二维数组每一行中的vecotr<int>中的元素全部设置为1
	for (size_t i = 0; i < n; ++i)
		vv[i].resize(i + 1, 1);
	// 给杨慧三角出第一列和对角线的所有元素赋值
	for (int i = 2; i < n; ++i)
	{
		for (int j = 1; j < i; ++j)
		{
			vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

bit::vector<bit::vector<int>> vv(n);构造一个vv动态二维数组,vv中总共有n个元素,每个元素都是vector类型的,每行没有包含任何元素,如果n为5时如下所示:

image-20240411220337186

vv中元素填充完成之后,如下图所示:

image-20240411220354165

使用标准库中vector构建动态二维数组时与上图实际是一致的。

image-20240411220425994

image-20240411220433814

三.补充

image-20240411220509836

在这里插入图片描述

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号