当前位置:   article > 正文

以pytorch pipeline并行为例,分析各kernel的耗时占比及性能瓶颈

以pytorch pipeline并行为例,分析各kernel的耗时占比及性能瓶颈


以下DEMO演示了,pipeline多卡并行时,如何分析各kernel的耗时占比
如果nccl kernel占比过大,说明GPU有效利用率不高
主要步骤如下:

  • 1.nsys profile 运行4卡pipeline并行demo
  • 2.用开源的nsys2json.py将nsys的sqlite-schema转成chrome event格式
  • 3.分析chrome event格式,按设备统计各kernel的耗时占比

1.生成pipeline并行的测试代码

tee pp_demo_fps.py <<-'EOF'
import os
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import torch.distributed as dist
from torch.distributed import ReduceOp
import threading
import queue
import time
import argparse
import nvtx
 
class FeedForward(nn.Module):    
    def __init__(self,hidden_size,ffn_size):
        super(FeedForward, self).__init__()
        self.fc1 = nn.Linear(hidden_size, ffn_size,bias=False)
        self.fc2 = nn.Linear(ffn_size, hidden_size,bias=False)    
    def forward(self, input):
        with nvtx.annotate(f"fc1"):
            out=self.fc1(input)
        with nvtx.annotate(f"fc2"):
            out=self.fc2(out)          
        return out
  
parser = argparse.ArgumentParser(description="")
parser.add_argument('--hidden_size', default=512, type=int, help='')
parser.add_argument('--ffn_size', default=1024, type=int, help='')
parser.add_argument('--seq_len', default=512, type=int, help='')
parser.add_argument('--batch_size', default=8, type=int, help='')
parser.add_argument('--world_size', default=4, type=int, help='')
parser.add_argument('--device', default="cuda", type=str, help='')
parser.add_argument('--chunk_size', default=1, type=int, help='')
    
args = parser.parse_args()
hidden_size = args.hidden_size
ffn_size = args.ffn_size
seq_len = args.seq_len
batch_size = args.batch_size
world_size = args.world_size
device = args.device
chunk_size = args.chunk_size
   
def tp_mode():
  torch.random.manual_seed(1)
  dist.init_process_group(backend='nccl')
        
  world_size = torch.distributed.get_world_size()
  rank=rank = torch.distributed.get_rank()
  local_rank=int(os.environ['LOCAL_RANK'])
      
  torch.cuda.set_device(local_rank)
  device = torch.device("cuda",local_rank)
   
  model = FeedForward(hidden_size,ffn_size)
  model.eval()
  input = torch.rand((batch_size, seq_len, hidden_size),dtype=torch.float32).half().to(device)
  model=model.half().to(device)
   
   
  chunks=torch.split(input,chunk_size,dim=0)
   
  for epoch in range(32):
    with nvtx.annotate(f"rank:{rank} epoch:{epoch}"):
      all_output=[]
      snd_reqs=None
    
      for idx,chunk in enumerate(chunks):
        with nvtx.annotate(f"chunk:{idx}"):
          with nvtx.annotate(f"wait_snd"):
            if snd_reqs:
              snd_reqs.wait()
            snd_reqs=None
          if rank==0:
            with nvtx.annotate(f"infer"):
              out=model(chunk)
          else:
            with nvtx.annotate(f"recv"):
              torch.distributed.recv(chunk,rank-1)
            with nvtx.annotate(f"infer"):
              out=model(chunk)
          if rank==world_size-1:
            all_output.append(out.clone())
          else:
            with nvtx.annotate(f"isend"):
              snd_reqs = torch.distributed.isend(out,rank+1)
    
      if rank==world_size-1:
        with nvtx.annotate(f"concat"):
          out=torch.cat(all_output,dim=0)
   
if __name__ == "__main__":
  num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
  is_distributed = num_gpus > 1
  if is_distributed:
    tp_mode()
EOF
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98

2.pipeline profing

export NCCL_DEBUG=info
export NCCL_SOCKET_IFNAME=ens8
export NCCL_IB_DISABLE=1

rm cuda_profing_report.* -f
nsys profile --stats=true -o cuda_profing_report.nsys-rep -f true -t cuda,nvtx --gpu-metrics-device=0,1,2,3 \
        torchrun -m --nnodes=1 --nproc_per_node=4 pp_demo_fps --hidden_size 512 \
        --ffn_size 4096 --seq_len 512 --batch_size 16 --world_size 4 --chunk_size 8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

3.生成nsys2json.py代码

tee nsys2json.py <<-'EOF'
import sqlite3
import argparse
import json
from pathlib import Path
import re
from collections import defaultdict

_PID_TO_DEVICE = None

# Code adapted from https://raw.githubusercontent.com/chenyu-jiang/nsys2json/main/nsys2json.py

def parse_args():
    parser = argparse.ArgumentParser(description='Convert nsight systems sqlite output to Google Event Trace compatible JSON.')
    parser.add_argument("-f", '--filename', help="Path to the input sqlite file.", required=True)
    parser.add_argument("-o", "--output", help="Output file name, default to same as input with .json extension.")
    parser.add_argument("-t", "--activity-type", help="Type of activities shown. Default to all.", default=["kernel", "nvtx-kernel"], choices=['kernel', 'nvtx', "nvtx-kernel", "cuda-api"], nargs="+")
    parser.add_argument("--nvtx-event-prefix", help="Filter NVTX events by their names' prefix.", type=str, nargs="*")
    parser.add_argument("--nvtx-color-scheme", help="""Color scheme for NVTX events.
                                                    Accepts a dict mapping a string to one of chrome tracing colors.
                                                    Events with names containing the string will be colored.
                                                    E.g. {"send": "thread_state_iowait", "recv": "thread_state_iowait", "compute": "thread_state_running"}
                                                    For details of the color scheme, see links in https://github.com/google/perfetto/issues/208
                                                    """, type=json.loads, default={})
    args = parser.parse_args()
    if args.output is None:
        args.output = Path(args.filename).with_suffix(".json")
    return args

class ActivityType:
    KERNEL = "kernel"
    NVTX_CPU = "nvtx"
    NVTX_KERNEL = "nvtx-kernel"
    CUDA_API = "cuda-api"

def munge_time(t):
    """Take a timestamp from nsys (ns) and convert it into us (the default for chrome://tracing)."""
    # For strict correctness, divide by 1000, but this reduces accuracy.
    return t / 1000.

# For reference of the schema, see
# https://docs.nvidia.com/nsight-systems/UserGuide/index.html#exporter-sqlite-schema
def parse_cupti_kernel_events(conn: sqlite3.Connection, strings: dict):
    per_device_kernel_rows = defaultdict(list)
    per_device_kernel_events = defaultdict(list)
    for row in conn.execute("SELECT * FROM CUPTI_ACTIVITY_KIND_KERNEL"):
        per_device_kernel_rows[row["deviceId"]].append(row)
        event = {
                "name": strings[row["shortName"]],
                "ph": "X", # Complete Event (Begin + End event)
                "cat": "cuda",
                "ts": munge_time(row["start"]),
                "dur": munge_time(row["end"] - row["start"]),
                "tid": "Stream {}".format(row["streamId"]),
                "pid": "Device {}".format(row["deviceId"]),
                "args": {
                    # TODO: More
                    },
                }
        per_device_kernel_events[row["deviceId"]].append(event)
    return per_device_kernel_rows, per_device_kernel_events

def link_pid_with_devices(conn: sqlite3.Connection):
    # map each pid to a device. assumes each pid is associated with a single device
    global _PID_TO_DEVICE
    if _PID_TO_DEVICE is None:
        pid_to_device = {}
        for row in conn.execute("SELECT DISTINCT deviceId, globalPid / 0x1000000 % 0x1000000 AS PID FROM CUPTI_ACTIVITY_KIND_KERNEL"):
            assert row["PID"] not in pid_to_device, \
                f"A single PID ({row['PID']}) is associated with multiple devices ({pid_to_device[row['PID']]} and {row['deviceId']})."
            pid_to_device[row["PID"]] = row["deviceId"]
        _PID_TO_DEVICE = pid_to_device
    return _PID_TO_DEVICE

def parse_nvtx_events(conn: sqlite3.Connection, event_prefix=None, color_scheme={}):
    if event_prefix is None:
        match_text = ''
    else:
        match_text = " AND "
        if len(event_prefix) == 1:
            match_text += f"NVTX_EVENTS.text LIKE '{event_prefix[0]}%'"
        else:
            match_text += "("
            for idx, prefix in enumerate(event_prefix):
                match_text += f"NVTX_EVENTS.text LIKE '{prefix}%'"
                if idx == len(event_prefix) - 1:
                    match_text += ")"
                else:
                    match_text += " OR "

    per_device_nvtx_rows = defaultdict(list)
    per_device_nvtx_events = defaultdict(list)
    pid_to_device = link_pid_with_devices(conn)
    # eventType 59 is NvtxPushPopRange, which corresponds to torch.cuda.nvtx.range apis
    for row in conn.execute(f"SELECT start, end, text, globalTid / 0x1000000 % 0x1000000 AS PID, globalTid % 0x1000000 AS TID FROM NVTX_EVENTS WHERE NVTX_EVENTS.eventType == 59{match_text};"):
        text = row['text']
        pid = row['PID']
        tid = row['TID']
        per_device_nvtx_rows[pid_to_device[pid]].append(row)
        assert pid in pid_to_device, f"PID {pid} not found in the pid to device map."
        event = {
                "name": text,
                "ph": "X", # Complete Event (Begin + End event)
                "cat": "nvtx",
                "ts": munge_time(row["start"]),
                "dur": munge_time(row["end"] - row["start"]),
                "tid": "NVTX Thread {}".format(tid),
                "pid": "Device {}".format(pid_to_device[pid]),
                "args": {
                    # TODO: More
                    },
                }
        if color_scheme:
            for key, color in color_scheme.items():
                if re.search(key, text):
                    event["cname"] = color
                    break
        per_device_nvtx_events[pid_to_device[pid]].append(event)
    return per_device_nvtx_rows, per_device_nvtx_events

def parse_cuda_api_events(conn: sqlite3.Connection, strings: dict):
    pid_to_devices = link_pid_with_devices(conn)
    per_device_api_rows = defaultdict(list)
    per_device_api_events = defaultdict(list)
    # event type 0 is TRACE_PROCESS_EVENT_CUDA_RUNTIME
    for row in conn.execute(f"SELECT start, end, globalTid / 0x1000000 % 0x1000000 AS PID, globalTid % 0x1000000 AS TID, correlationId, nameId FROM CUPTI_ACTIVITY_KIND_RUNTIME;"):
        text = strings[row['nameId']]
        pid = row['PID']
        tid = row['TID']
        correlationId = row['correlationId']
        per_device_api_rows[pid_to_devices[pid]].append(row)
        event = {
                "name": text,
                "ph": "X", # Complete Event (Begin + End event)
                "cat": "cuda_api",
                "ts": munge_time(row["start"]),
                "dur": munge_time(row["end"] - row["start"]),
                "tid": "CUDA API Thread {}".format(tid),
                "pid": "Device {}".format(pid_to_devices[pid]),
                "args": {
                        "correlationId": correlationId,
                    },
                }
        per_device_api_events[pid_to_devices[pid]].append(event)
    return per_device_api_rows, per_device_api_events

def _find_overlapping_intervals(nvtx_rows, cuda_api_rows):
    mixed_rows = []
    for nvtx_row in nvtx_rows:
        start = nvtx_row["start"]
        end = nvtx_row["end"]
        mixed_rows.append((start, 1, "nvtx", nvtx_row))
        mixed_rows.append((end, -1, "nvtx", nvtx_row))
    for cuda_api_row in cuda_api_rows:
        start = cuda_api_row["start"]
        end = cuda_api_row["end"]
        mixed_rows.append((start, 1, "cuda_api", cuda_api_row))
        mixed_rows.append((end, -1, "cuda_api", cuda_api_row))
    mixed_rows.sort(key=lambda x: (x[0], x[1], x[2]))
    active_intervals = []
    result = defaultdict(list)
    for _, event_type, event_origin, orig_event in mixed_rows:
        if event_type == 1:
            # start
            if event_origin == "nvtx":
                active_intervals.append(orig_event)
            else:
                for event in active_intervals:
                    result[event].append(orig_event)
        else:
            # end
            if event_origin == "nvtx":
                active_intervals.remove(orig_event)
    return result

def link_nvtx_events_to_kernel_events(strings: dict,
                                      pid_to_device: dict[int, int],
                                      per_device_nvtx_rows: dict[int, list],
                                      per_device_cuda_api_rows: dict[int, list],
                                      per_device_cuda_kernel_rows: dict[int, list],
                                      per_device_kernel_events: dict[int, list]):
    result = {}
    for device in pid_to_device.values():
        event_map = _find_overlapping_intervals(per_device_nvtx_rows[device], per_device_cuda_api_rows[device])
        correlation_id_map = defaultdict(dict)
        for cuda_api_row in per_device_cuda_api_rows[device]:
            correlation_id_map[cuda_api_row["correlationId"]]["cuda_api"] = cuda_api_row
        for kernel_row, kernel_trace_event in zip(per_device_cuda_kernel_rows[device], per_device_kernel_events[device]):
            correlation_id_map[kernel_row["correlationId"]]["kernel"] = kernel_row
            correlation_id_map[kernel_row["correlationId"]]["kernel_trace_event"] = kernel_trace_event
        for nvtx_row, cuda_api_rows in event_map.items():
            kernel_start_time = None
            kernel_end_time = None
            for cuda_api_row in cuda_api_rows:
                if "kernel" not in correlation_id_map[cuda_api_row["correlationId"]]:
                    # other cuda api event, ignore
                    continue
                kernel_row = correlation_id_map[cuda_api_row["correlationId"]]["kernel"]
                kernel_trace_event = correlation_id_map[cuda_api_row["correlationId"]]["kernel_trace_event"]
                if "NVTXRegions" not in kernel_trace_event["args"]:
                    kernel_trace_event["args"]["NVTXRegions"] = []
                kernel_trace_event["args"]["NVTXRegions"].append(nvtx_row["text"])
                if kernel_start_time is None or kernel_start_time > kernel_row["start"]:
                    kernel_start_time = kernel_row["start"]
                if kernel_end_time is None or kernel_end_time < kernel_row["end"]:
                    kernel_end_time = kernel_row["end"]
            if kernel_start_time is not None and kernel_end_time is not None:
                result[nvtx_row] = (kernel_start_time, kernel_end_time)
    return result

def parse_all_events(conn: sqlite3.Connection, strings: dict, activities=None, event_prefix=None, color_scheme={}):
    if activities is None:
        activities = [ActivityType.KERNEL, ActivityType.NVTX_CPU, ActivityType.NVTX_KERNEL]
    if ActivityType.KERNEL in activities or ActivityType.NVTX_KERNEL in activities:
        per_device_kernel_rows, per_device_kernel_events = parse_cupti_kernel_events(conn, strings)
    if ActivityType.NVTX_CPU in activities or ActivityType.NVTX_KERNEL in activities:
        per_device_nvtx_rows, per_device_nvtx_events = parse_nvtx_events(conn, event_prefix=event_prefix, color_scheme=color_scheme)
    if ActivityType.CUDA_API in activities or ActivityType.NVTX_KERNEL in activities:
        per_device_cuda_api_rows, per_device_cuda_api_events = parse_cuda_api_events(conn, strings)
    if ActivityType.NVTX_KERNEL in activities:
        pid_to_device = link_pid_with_devices(conn)
        nvtx_kernel_event_map = link_nvtx_events_to_kernel_events(strings, pid_to_device, per_device_nvtx_rows, per_device_cuda_api_rows, per_device_kernel_rows, per_device_kernel_events)
    traceEvents = []
    if ActivityType.KERNEL in activities:
        for k, v in per_device_kernel_events.items():
            traceEvents.extend(v)
    if ActivityType.NVTX_CPU in activities:
        for k, v in per_device_nvtx_events.items():
            traceEvents.extend(v)
    if ActivityType.CUDA_API in activities:
        for k, v in per_device_cuda_api_events.items():
            traceEvents.extend(v)
    if ActivityType.NVTX_KERNEL in activities:
        for nvtx_event, (kernel_start_time, kernel_end_time) in nvtx_kernel_event_map.items():
            event = {
                "name": nvtx_event["text"],
                "ph": "X", # Complete Event (Begin + End event)
                "cat": "nvtx-kernel",
                "ts": munge_time(kernel_start_time),
                "dur": munge_time(kernel_end_time - kernel_start_time),
                "tid": "NVTX Kernel Thread {}".format(nvtx_event["tid"]),
                "pid": "Device {}".format(pid_to_device[nvtx_event["pid"]]),
                "args": {
                    # TODO: More
                    },
                }
            traceEvents.append(event)
    return traceEvents

def nsys2json():
    args = parse_args()
    conn = sqlite3.connect(args.filename)
    conn.row_factory = sqlite3.Row

    strings = {}
    for r in conn.execute("SELECT id, value FROM StringIds"):
        strings[r["id"]] = r["value"]
    
    traceEvents = parse_all_events(conn, strings, activities=args.activity_type, event_prefix=args.nvtx_event_prefix, color_scheme=args.nvtx_color_scheme)
    # make the timelines appear in pid and tid order
    traceEvents.sort(key=lambda x: (x["pid"], x["tid"]))
    
    for i in traceEvents:
        if i["name"] is None:
            i["name"]="null"    
    with open(args.output, 'w') as f:
        json.dump(traceEvents, f,indent=4)

if __name__ == "__main__":
    nsys2json()
EOF
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271

4.将nsys sqlite格式转chrome json格式

python3 nsys2json.py -f cuda_profing_report.sqlite -o prof.json
  • 1

5.生成耗时成分统计代码

tee paser_prof.py <<-'EOF'
import json
import re
import os
import sys
import numpy as np

with open(sys.argv[1],"r") as f:
    traceEvents=json.load(f)
traceEventsPerDevice={}
for event in traceEvents:
    pid=event["pid"]
    if pid not in traceEventsPerDevice:
        traceEventsPerDevice[pid]=[] 
    if event["cat"]=="cuda":
        epoch_str=event["args"]['NVTXRegions'][0]
        match = re.match(".*epoch:(\d*)", epoch_str)
        epoch=int(match.group(1))    
        #过滤掉warmup阶段
        if epoch>4:
            traceEventsPerDevice[pid].append((event["name"]+"_"+event["tid"],event["ts"],event["dur"],epoch))
for k,v in traceEventsPerDevice.items():
    v.sort(key=lambda x: x[1], reverse=False)
for device,v in traceEventsPerDevice.items():  
    print(f"-----------------------------{device}-----------------------------")
    totalDurPerKernel={}
    durPerKernel={}
    marginPerKernel={}
    for ev in v:
        name,ts,dur,epoch=ev
        if name not in totalDurPerKernel:
            totalDurPerKernel[name]=0
            durPerKernel[name]=[]
            marginPerKernel[name]={"beg":ts}
        totalDurPerKernel[name]+=dur
        durPerKernel[name].append(dur)
        marginPerKernel[name]["end"]=ts        
    
    total_percent=0
    for name,dur in sorted(totalDurPerKernel.items(), key=lambda d:d[1], reverse = True):
        total_dur=marginPerKernel[name]["end"]-marginPerKernel[name]["beg"]
        total_percent+=(dur/total_dur)
        print("{:7.2f} min:{:7.2f} max:{:7.2f} avg:{:7.2f} {}".format(
                dur/total_dur,
                np.min(durPerKernel[name]),
                np.max(durPerKernel[name]),
                np.mean(durPerKernel[name]),
                name))
    print("{:7.2f}".format(total_percent))
EOF
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

6.统计耗时成分

python3 paser_prof.py prof.json
  • 1

7.耗时成分如下:

-----------------------------Device 0-----------------------------
   0.88 min:1481.39 max:3153.01 avg:2304.01 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 20
   0.16 min: 285.22 max: 661.51 avg: 438.63 Kernel_Stream 7
   0.14 min: 238.11 max: 601.51 avg: 372.28 ampere_fp16_s16816gemm_fp16_128x64_ldg8_f2f_tn_Stream 7
   1.18
-----------------------------Device 1-----------------------------
   0.69 min:1413.80 max:2148.40 avg:1815.43 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 24
   0.43 min: 611.49 max:1828.39 avg:1130.83 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 20
   0.12 min: 233.79 max: 748.87 avg: 319.80 ampere_fp16_s16816gemm_fp16_128x64_ldg8_f2f_tn_Stream 7
   0.11 min: 276.61 max: 448.48 avg: 289.69 Kernel_Stream 7
   1.35
-----------------------------Device 2-----------------------------
   0.64 min:1425.58 max:1902.06 avg:1669.10 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 24
   0.49 min: 625.38 max:2027.44 avg:1294.33 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 20
   0.12 min: 283.36 max: 324.23 avg: 309.24 Kernel_Stream 7
   0.10 min: 233.76 max: 273.22 avg: 257.85 ampere_fp16_s16816gemm_fp16_128x64_ldg8_f2f_tn_Stream 7
   1.34
-----------------------------Device 3-----------------------------
   0.78 min:1437.31 max:2588.53 avg:2040.18 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 20
   0.12 min: 323.55 max: 324.13 avg: 323.83 Kernel_Stream 7
   0.10 min: 269.47 max: 274.24 avg: 270.91 ampere_fp16_s16816gemm_fp16_128x64_ldg8_f2f_tn_Stream 7
   0.01 min:  28.22 max:  29.12 avg:  28.64 CatArrayBatchedCopy_Stream 7
   1.01
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

8.查看GPU PCIE链路状态

nvidia-smi --query-gpu="gpu_name,pcie.link.gen.current,pcie.link.width.current" --format=csv -i 0,1,2,3
  • 1

9.链路状态如下

name, pcie.link.gen.current, pcie.link.width.current
NVIDIA GeForce RTX 3090, 1, 16
NVIDIA GeForce RTX 3090, 1, 16
NVIDIA GeForce RTX 3090, 1, 16
NVIDIA GeForce RTX 3090, 1, 16
  • 1
  • 2
  • 3
  • 4
  • 5
  • 当前为GEN1 X16: 理论带宽4GB/s

10.Nsight Compute查看Timeline

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/434219
推荐阅读
相关标签
  

闽ICP备14008679号