赞
踩
通常使用labelme来制作实例分割数据集,也有教程和代码来转换成COCO数据集。labelme项目地址为:https://github.com/wkentaro/labelme/tree/main
conda create --name=labelme python=3
conda activate labelme
pip install labelme
# or install standalone executable/app from:
# https://github.com/wkentaro/labelme/releases
在labelme标注区域时,对于存在遮挡的物体,可以利用labelme标签里的group选项。如下图所示,elephant有两部分区域,group都设置为0.
在labelme项目下的examples/instance_segmentation文件夹中提供转VOC和COCO两种格式的数据和脚本。本文只对转COCO格式进行描述,文件结构如下所示。
对于自定义数据集,按照以上的结果准备好图像数据和标签数据,即data_annotated文件夹中的内容。运行如下代码,转换为COCO格式的数据集。
python labelme2coco.py data_annotated/ coco --labels labels.txt
完成之后,会在输出文件夹下得到如下的内容。
一个小的点,在保存json文件时,可以将代码修改成如下,得到的json文件看起来比较美观,同时支持中文。
with open(out_ann_file, "w") as f:
json.dump(data, f, indent=2, ensure_ascii=False))
#ensure_ascii=False可以消除json包含中文的乱码问题
本文的环境配置如下:
在model
的配置部分,唯一需要修改的是num_classes
参数,根据数据集修改对应值。
# model settings num_classes=1 model = dict( type='MaskRCNN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=num_classes, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=num_classes, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False)) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5))
在data
的配置部分,需要修改data_root
,classes
参数来指明数据集的路径,以及对应的类别名列表。对于训练集、验证集和测试集的ann_file
和img_prefix
两个参数需要进行调整。
dataset_type = 'CocoDataset' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(416, 416), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(416, 416), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data_root = 'datasets/xuzhou2_single_jietou/' classes=["jietou"] data = dict( samples_per_gpu=32, workers_per_gpu=1, # dataset type train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_jietou_train20231016.json', img_prefix=data_root + 'train/', pipeline=train_pipeline, classes=classes ), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_jietou_val20231016.json', img_prefix=data_root + 'val/', pipeline=test_pipeline, classes=classes ), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_jietou_val20231016.json', img_prefix=data_root + 'val/', pipeline=test_pipeline, classes=classes ), ) evaluation = dict( interval=10, metric=['bbox', 'segm'] )
使用随机梯度下降法来更新参数,修改学习率的优化策略为warmup+余弦衰减策略。
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# Learning rate scheduler config used to register LrUpdater hook
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
warmup_iters=25,
warmup_ratio=0.001,
warmup_by_epoch=True
)
total_epochs = 150
修改权重保存间隔为5个epoch保存一次。
checkpoint_config = dict(interval=5)
# yapf:disable
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
通过运行如下命令,即可开启Mask R-CNN的训练。
CUDA_VISIBLE_DEVICES=4,5,6,7 \
bash tools/dist_train.sh configs/aaaa/mask_rcnn_r50_fpn_custom.py 4
通过运行test.py文件,来开启单GPU的测试,命令如下。
python tools/test.py /path/to/config_file /path/to/checkpoint_file --eval bbox segm
Q1:oserror: [errno 39] directory not empty "eval_hook"
通过注释mmdet/core/evaluation/eval_hooks.py文件中的tmpdir内容,具体操作是将multi_gpu_test函数中的tmpdir设置为None。
results = multi_gpu_test(
runner.model,
self.dataloader,
# tmpdir=tmpdir,
tmpdir=None,
gpu_collect=self.gpu_collect)
【实例分割(一)】Detectron2 数据集制作并注册数据集训练 - 古月居
【实例分割(二)】Mask2Former 数据集制作和训练 - 古月居
【深度学习】YOLOv5实例分割 数据集制作、模型训练以及TensorRT部署
利用labelme制作实例分割数据集_labelme实例分割_Jiazhou_garland的博客-CSDN博客
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。