赞
踩
使用大模型训练完命名实体识别的模型后,发现不知道怎么评估实体识别的准确率、召回率和F1。于是便自己实现了代码,同时提供了完整可运行的项目代码。
完整代码: https://github.com/JieShenAI/csdn/tree/main/KnowledgeGraph/ner_compute
instruction
: 大模型做实体抽取的指令;label
: 真实的label;output
: 训练完成的大模型的预测结果;{
"id": "ce0...21",
"task": "NER",
"source": ".",
"instruction": "{\"instruction\": \"你是专门进行实体抽取的专家。请从input中抽取出符合schema定义的实体,不存在的实体类型返回空列表。请按照JSON字符串的格式回答。\", \"schema\": [\"PER\", \"ORG\", \"LOC\"], \"input\": \"我们变而以书会友,以书结缘,把欧美、港台流行的食品类图谱、画册、工具书汇集一堂。\"}",
"label": "[{\"entity\": \"美\", \"entity_type\": \"LOC\"}, {\"entity\": \"台\", \"entity_type\": \"LOC\"}]",
"output": "{\"PER\": [], \"ORG\": [], \"LOC\": [\"美\", \"台\"]}"
}
原始的label
不便于使用,首先转换label
为extra_label
如下:
{
"id": "ce0...21",
"task": "NER",
"source": ".",
"instruction": "{\"instruction\": \"你是专门进行实体抽取的专家。请从input中抽取出符合schema定义的实体,不存在的实体类型返回空列表。请按照JSON字符串的格式回答。\", \"schema\": [\"PER\", \"ORG\", \"LOC\"], \"input\": \"我们变而以书会友,以书结缘,把欧美、港台流行的食品类图谱、画册、工具书汇集一堂。\"}",
"label": "[{\"entity\": \"美\", \"entity_type\": \"LOC\"}, {\"entity\": \"台\", \"entity_type\": \"LOC\"}]",
"output": "{\"PER\": [], \"ORG\": [], \"LOC\": [\"美\", \"台\"]}",
"extra_label": {"PER": [],"ORG": [], "LOC": ["美","台"]}
}
下述代码完成label
到extra_label
的转换,然后再使用output
和extra_label
计算准确率、召回率和F1;
label
到extra_label
的转换的代码如下:
import json
ent_class = ["PER", "ORG", "LOC"]
# 添加额外标签 def add_extra_labels(file_path, output_path): def _add_extra_labels(file_path): with open(file_path, 'r', encoding='utf-8') as f: for line in f: data = json.loads(line) label_data = eval(data['label']) extra_labels = { ent: [] for ent in ent_class } for ent in label_data: entity = ent['entity'] entity_type = ent['entity_type'] if entity_type in ent_class: extra_labels[entity_type].append(entity) data['extra_label'] = extra_labels yield data with open(output_path, 'w', encoding='utf-8') as f: for data in _add_extra_labels(file_path): f.write(json.dumps(data, ensure_ascii=False) + '\n')
input_file = 'data/predict_data.json'
output_file = 'data/data.json'
add_extra_labels(input_file, output_file)
精确率:识别出正确的实体数 / 识别出的实体数
召回率:识别出正确的实体数 / 样本的实体数
F1值 = (精确率 * 召回率 * 2) / ( 精确率 + 召回率)
代码核心思路:
将预测结果与label转为集合,再利用集合的与操作,即可判断出模型预测成功的实体;
Node
:
from dataclasses import dataclass
@dataclass
class Node:
# 默认值
predict_right_num: int = 0
predict_num: int = 0
label_num: int = 0
def compute(input_file): with open(input_file, 'r', encoding='utf-8') as f: total_ent = { ent: Node() for ent in ent_class } error = 0 for line in f: data = json.loads(line) extra_labels = data['extra_label'] # 大模型采取的是序列到序列到文本生成,不能转换为字典的数据跳过即可 try: predict = eval(data['output']) except: error += 1 continue # 每个不同的实体类别单独计数 for ent_name in ent_class: extra_s = set(extra_labels[ent_name]) predict_s = set(predict[ent_name]) total_ent[ent_name].predict_right_num += len(extra_s & predict_s) total_ent[ent_name].predict_num += len(predict_s) total_ent[ent_name].label_num += len(extra_s) for ent in ent_class: acc = total_ent[ent].predict_right_num / (total_ent[ent].predict_num + 1e-6) recall = total_ent[ent].predict_right_num / (total_ent[ent].label_num + 1e-6) f1 = 2 * acc * recall / (acc + recall) print(f'{ent} acc: {acc:.4f} recall: {recall:.4f} f1: {f1:.4f}') if __name__ == '__main__': compute('infer_1_epoch_extra.json')
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。