赞
踩
迭代器在函数如何使用?
如何判断迭代器是随机访问的还是前向的还是双向的?
+
操作和-
操作,就是随机访问的。++
操作,就是前向非随机访问的。++
操作和--
操作,就是双向非随机访问的。所有容器都可以使用算法库中的算法吗?
vector数据结构和数组非常相似,也称为单端数组。vector与普通数组区别是:数组是静态空间,而vector可以动态扩展。动态扩展并不是在原空间之后续接新空间,而是找更大的内存空间,然后将原数据拷贝新空间,释放原空间。
vector容器的迭代器是支持随机访问的迭代器。
vector的构造函数有以下几种:
vector<T> v;
:采用模板实现类实现,默认构造函数。vector(v.begin(), v.end());
:将v[begin(), end())
区间中的元素拷贝给本身。vector(n, elem);
:构造函数将n个elem拷贝给本身。vector(const vector &vec);
:拷贝构造函数。#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { vector<int> v1; //无参构造 for (int i = 0; i < 10; i++) { v1.push_back(i); } printVector(v1); vector<int> v2(v1.begin(), v1.end()); printVector(v2); vector<int> v3(10, 100); printVector(v3); vector<int> v4(v3); printVector(v4); } int main() { test01(); system("pause"); return 0; }
vector容器可以通过如下三种方式进行赋值:
vector& operator=(const vector &vec);
:重载等号操作符assign(beg, end);
:将[beg, end)区间中的数据拷贝赋值给本身。assign(n, elem);
:将n个elem拷贝赋值给本身。#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } //赋值操作 void test01() { vector<int> v1; //无参构造 for (int i = 0; i < 10; i++) { v1.push_back(i); } printVector(v1); vector<int>v2; v2 = v1; printVector(v2); vector<int>v3; v3.assign(v1.begin(), v1.end()); printVector(v3); vector<int>v4; v4.assign(10, 100); printVector(v4); } int main() { test01(); system("pause"); return 0; }
vector提供了对自身的数据数目进行判断和对空间大小进行指定的方法,如下:
empty();
:判断容器是否为空。capacity();
:容器的容量。size();
:返回容器中元素的个数。resize(int num);
:重新指定容器的长度为num,若容器变长,则以默认值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。resize(int num, elem);
:重新指定容器的长度为num,若容器变长,则以elem值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { vector<int> v1; for (int i = 0; i < 10; i++) { v1.push_back(i); } printVector(v1); if (v1.empty()) { cout << "v1为空" << endl; } else { cout << "v1不为空" << endl; cout << "v1的容量 = " << v1.capacity() << endl; cout << "v1的大小 = " << v1.size() << endl; } //resize 重新指定大小 ,若指定的更大,默认用0填充新位置,可以利用重载版本替换默认填充 v1.resize(15,10); printVector(v1); //resize 重新指定大小 ,若指定的更小,超出部分元素被删除 v1.resize(5); printVector(v1); } int main() { test01(); system("pause"); return 0; }
vector容器同样可以进行插入、删除操作。具体方法如下(注意,位置使用的都是迭代器):
push_back(ele);
:尾部插入元素ele。pop_back();
:删除最后一个元素。insert(const_iterator pos, ele);
:迭代器指向位置pos插入元素ele。insert(const_iterator pos, int count,ele);
:迭代器指向位置pos插入count个元素ele。erase(const_iterator pos);
:删除迭代器指向的元素。erase(const_iterator start, const_iterator end);
:删除迭代器从start到end之间的元素。clear();
:删除容器中所有元素。#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } //插入和删除 void test01() { vector<int> v1; //尾插 v1.push_back(10); v1.push_back(20); v1.push_back(30); v1.push_back(40); v1.push_back(50); printVector(v1); //尾删 v1.pop_back(); printVector(v1); //插入 v1.insert(v1.begin(), 100); printVector(v1); v1.insert(v1.begin(), 2, 1000); printVector(v1); //删除 v1.erase(v1.begin()); printVector(v1); //清空 v1.erase(v1.begin(), v1.end()); v1.clear(); printVector(v1); } int main() { test01(); system("pause"); return 0; }
vector可以对其中的数据的存取操作(存取意味着读和写),具体方法如下:
at(int idx);
:返回索引idx所指的数据,也可以修通过该方法改数据。operator[];
:返回索引idx所指的数据,也可以修通过该方法改数据。front();
:返回容器中第一个数据元素,也可以修通过该方法改数据。back();
:返回容器中最后一个数据元素,也可以修通过该方法改数据。#include <vector> void test01() { vector<int>v1; for (int i = 0; i < 10; i++) { v1.push_back(i); } for (int i = 0; i < v1.size(); i++) { cout << v1[i] << " "; } cout << endl; for (int i = 0; i < v1.size(); i++) { cout << v1.at(i) << " "; } cout << endl; cout << "v1的第一个元素为: " << v1.front() << endl; cout << "v1的最后一个元素为: " << v1.back() << endl; } int main() { test01(); system("pause"); return 0; }
功能描述:
vector实现两个容器内元素进行互换,本质上是进行了指针的互换,具体方法如下:
swap(vec);
:将vec与本身的元素互换#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { vector<int>v1; for (int i = 0; i < 10; i++) { v1.push_back(i); } printVector(v1); vector<int>v2; for (int i = 10; i > 0; i--) { v2.push_back(i); } printVector(v2); //互换容器 cout << "互换后" << endl; v1.swap(v2); printVector(v1); printVector(v2); } void test02() { vector<int> v; for (int i = 0; i < 100000; i++) { v.push_back(i); } cout << "v的容量为:" << v.capacity() << endl; cout << "v的大小为:" << v.size() << endl; v.resize(3); cout << "v的容量为:" << v.capacity() << endl; cout << "v的大小为:" << v.size() << endl; //收缩内存 vector<int>(v).swap(v); //匿名对象 cout << "v的容量为:" << v.capacity() << endl; cout << "v的大小为:" << v.size() << endl; } int main() { test01(); test02(); system("pause"); return 0; }
为了减少vector在动态扩展容量时的扩展次数,vector提供了预留空间的方法,方法介绍如下:
reserve(int len);
:容器预留len个元素长度,预留位置不初始化,元素不可访问。#include <vector> void test01() { vector<int> v; //预留空间 v.reserve(100000); int num = 0; int* p = NULL; for (int i = 0; i < 100000; i++) { v.push_back(i); if (p != &v[0]) { p = &v[0]; num++; } } cout << "num:" << num << endl; } int main() { test01(); system("pause"); return 0; }
deque容器实际上是一个双端数组(或者说双端队列),可以对头端进行插入删除操作,也可以对尾端进行插入删除操作。
与vector相比,deque对头部的插入删除速度更快,但访问速度会慢,这与两个容器的底层实现有关。对于deque而言,其内部有个中控器,维护每段缓冲区中的内容,缓冲区中存放真实数据;中控器维护的是每个缓冲区的地址,使得使用deque时像一片连续的内存空间。
deque容器的迭代器也是支持随机访问的迭代器。
deque的构造函数主要有以下四种:
deque<T> deqT
;:默认构造形式。deque(beg, end);
:构造函数将其他deque的[beg, end)区间中的元素拷贝给本身。deque(n, elem);
:构造函数将n个elem拷贝给本身。deque(const deque &deq);
:拷贝构造函数。#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //deque构造 void test01() { deque<int> d1; //无参构造函数 for (int i = 0; i < 10; i++) { d1.push_back(i); } printDeque(d1); deque<int> d2(d1.begin(),d1.end()); printDeque(d2); deque<int>d3(10,100); printDeque(d3); deque<int>d4 = d3; printDeque(d4); } int main() { test01(); system("pause"); return 0; }
deque容器进行赋值主要有以下三种方式:
deque& operator=(const deque &deq);
:重载等号操作符assign(beg, end);
:将[beg, end)区间中的数据拷贝赋值给本身。assign(n, elem);
:将n个elem拷贝赋值给本身。#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //赋值操作 void test01() { deque<int> d1; for (int i = 0; i < 10; i++) { d1.push_back(i); } printDeque(d1); deque<int>d2; d2 = d1; printDeque(d2); deque<int>d3; d3.assign(d1.begin(), d1.end()); printDeque(d3); deque<int>d4; d4.assign(10, 100); printDeque(d4); } int main() { test01(); system("pause"); return 0; }
deque.empty();
:判断容器是否为空。deque.size();
:返回容器中元素的个数。deque.resize(num);
:重新指定容器的长度为num,若容器变长,则以默认值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。deque.resize(num, elem);
:重新指定容器的长度为num,若容器变长,则以elem值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //大小操作 void test01() { deque<int> d1; for (int i = 0; i < 10; i++) { d1.push_back(i); } printDeque(d1); //判断容器是否为空 if (d1.empty()) { cout << "d1为空!" << endl; } else { cout << "d1不为空!" << endl; //统计大小 cout << "d1的大小为:" << d1.size() << endl; } //重新指定大小 d1.resize(15, 1); printDeque(d1); d1.resize(5); printDeque(d1); } int main() { test01(); system("pause"); return 0; }
deque容器中插入和删除数据的操作方式如下(注意,位置全部使用的是迭代器):
push_back(elem);
:在容器尾部添加一个数据。push_front(elem);
:在容器头部插入一个数据。pop_back();
:删除容器最后一个数据。pop_front();
:删除容器第一个数据。insert(pos,elem);
:在pos位置插入一个elem元素的拷贝,返回新数据的位置,返回的也是迭代器。insert(pos,n,elem);
:在pos位置插入n个elem数据,无返回值。insert(pos,beg,end);
:在pos位置插入[beg,end)区间的数据,无返回值。clear();
:清空容器的所有数据。erase(beg,end);
:删除[beg,end)区间的数据,返回下一个数据的位置,返回的也是迭代器。erase(pos);
:删除pos位置的数据,返回下一个数据的位置,返回的也是迭代器。#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //两端操作 void test01() { deque<int> d; //尾插 d.push_back(10); d.push_back(20); //头插 d.push_front(100); d.push_front(200); printDeque(d); //尾删 d.pop_back(); //头删 d.pop_front(); printDeque(d); } //插入 void test02() { deque<int> d; d.push_back(10); d.push_back(20); d.push_front(100); d.push_front(200); printDeque(d); d.insert(d.begin(), 1000); printDeque(d); d.insert(d.begin(), 2,10000); printDeque(d); deque<int>d2; d2.push_back(1); d2.push_back(2); d2.push_back(3); d.insert(d.begin(), d2.begin(), d2.end()); printDeque(d); } //删除 void test03() { deque<int> d; d.push_back(10); d.push_back(20); d.push_front(100); d.push_front(200); printDeque(d); d.erase(d.begin()); printDeque(d); d.erase(d.begin(), d.end()); d.clear(); printDeque(d); } int main() { //test01(); //test02(); test03(); system("pause"); return 0; }
deque可以对数据进行存取操作,操作方法如下:
at(int idx);
:返回索引idx所指的数据。operator[];
:返回索引idx所指的数据。front();
:返回容器中第一个数据元素。back();
:返回容器中最后一个数据元素。#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //数据存取 void test01() { deque<int> d; d.push_back(10); d.push_back(20); d.push_front(100); d.push_front(200); for (int i = 0; i < d.size(); i++) { cout << d[i] << " "; } cout << endl; for (int i = 0; i < d.size(); i++) { cout << d.at(i) << " "; } cout << endl; cout << "front:" << d.front() << endl; cout << "back:" << d.back() << endl; } int main() { test01(); system("pause"); return 0; }
可以利用算法sort实现对deque容器进行排序,使用前需要包含头文件algorithm,具体用法如下:
sort(iterator beg, iterator end)
:对beg和end区间内元素进行排序。#include <deque> #include <algorithm> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { deque<int> d; d.push_back(10); d.push_back(20); d.push_front(100); d.push_front(200); printDeque(d); sort(d.begin(), d.end()); printDeque(d); } int main() { test01(); system("pause"); return 0; }
stack是一种先进后出(First In Last Out FILO)的数据结构,它只有一个出口。
栈中只有顶端的元素才可以被外界使用,因此栈不允许有遍历行为。栈中进入数据称为入栈push
,栈中弹出数据称为出栈pop
。
stack<T> stk;
:stack采用模板类实现, stack对象的默认构造形式。stack(const stack &stk);
:拷贝构造函数。stack& operator=(const stack &stk);
:重载等号操作符。push(elem);
:向栈顶添加元素。pop();
:从栈顶移除第一个元素。top();
:返回栈顶元素。empty();
:判断堆栈是否为空。size();
:返回栈的大小。#include <stack> //栈容器常用接口 void test01() { //创建栈容器 栈容器必须符合先进后出 stack<int> s; //向栈中添加元素,叫做 压栈 入栈 s.push(10); s.push(20); s.push(30); while (!s.empty()) { //输出栈顶元素 cout << "栈顶元素为: " << s.top() << endl; //弹出栈顶元素 s.pop(); } cout << "栈的大小为:" << s.size() << endl; } int main() { test01(); system("pause"); return 0; }
Queue是一种先进先出(First In First Out FIFO)的数据结构,它有两个出口。
队列容器允许从一端新增元素,从另一端移除元素。队列中只有队头和队尾才可以被外界使用,因此队列不允许有遍历行为。队列中进数据称为入队push
,队列中出数据称为出队pop
。
queue<T> que;
:queue采用模板类实现,queue对象的默认构造形式。queue(const queue &que);
:拷贝构造函数。queue& operator=(const queue &que);
:重载等号操作符。push(elem);
:往队尾添加元素。pop();
:从队头移除第一个元素。back();
:返回最后一个元素。front();
:返回第一个元素。empty();
:判断堆栈是否为空。size();
:回栈的大小。#include <queue> #include <string> class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } string m_Name; int m_Age; }; void test01() { //创建队列 queue<Person> q; //准备数据 Person p1("唐僧", 30); Person p2("孙悟空", 1000); Person p3("猪八戒", 900); Person p4("沙僧", 800); //向队列中添加元素 入队操作 q.push(p1); q.push(p2); q.push(p3); q.push(p4); //队列不提供迭代器,更不支持随机访问 while (!q.empty()) { //输出队头元素 cout << "队头元素-- 姓名: " << q.front().m_Name << " 年龄: "<< q.front().m_Age << endl; cout << "队尾元素-- 姓名: " << q.back().m_Name << " 年龄: " << q.back().m_Age << endl; cout << endl; //弹出队头元素 q.pop(); } cout << "队列大小为:" << q.size() << endl; } int main() { test01(); system("pause"); return 0; }
list主要用于将数据进行链式存储。所谓链表,是一种物理存储单元上非连续的存储结构,数据元素的逻辑顺序是通过链表中的指针链接实现的。链表由一系列结点组成;结点又由数据域和指针域组成,其中数据域用于存储数据元素,指针域用于存储下一个结点地址。STL中的链表是一个双向循环链表。下图为双向不循环链表的示意图:
list采用动态存储分配,不会造成内存浪费和溢出;同时,链表执行插入和删除操作十分方便,修改指针即可,不需要移动大量元素;但是,它对空间(指针域)和时间(遍历)额外耗费较大。
由于链表的存储方式并不是连续的内存空间,因此链表list中的迭代器只支持前移和后移,属于双向迭代器。List有一个重要的性质,插入操作和删除操作都不会造成原有list迭代器的失效,这在vector是不成立的。这是由于vector再插入时如果发生了扩容,可能会导致地址的变化,此时迭代器指向的位置还是老地址的位置,也就失效了。
list<T> lst;
:list采用采用模板类实现,对象的默认构造形式。list(beg,end);
:构造函数将[beg, end)区间中的元素拷贝给本身。list(n,elem);
:构造函数将n个elem拷贝给本身。list(const list &lst);
:拷贝构造函数。#include <list> void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); printList(L1); list<int>L2(L1.begin(),L1.end()); printList(L2); list<int>L3(L2); printList(L3); list<int>L4(10, 1000); printList(L4); } int main() { test01(); system("pause"); return 0; }
assign(beg, end);
:将[beg, end)区间中的数据拷贝赋值给本身。assign(n, elem)
:将n个elem拷贝赋值给本身。list& operator=(const list &lst);
:重载等号操作符。swap(lst);
:将lst与本身的元素互换。#include <list> void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } //赋值和交换 void test01() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); printList(L1); //赋值 list<int>L2; L2 = L1; printList(L2); list<int>L3; L3.assign(L2.begin(), L2.end()); printList(L3); list<int>L4; L4.assign(10, 100); printList(L4); } //交换 void test02() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); list<int>L2; L2.assign(10, 100); cout << "交换前: " << endl; printList(L1); printList(L2); cout << endl; L1.swap(L2); cout << "交换后: " << endl; printList(L1); printList(L2); } int main() { //test01(); test02(); system("pause"); return 0; }
size();
:返回容器中元素的个数。empty();
:判断容器是否为空。resize(num);
:重新指定容器的长度为num,若容器变长,则以默认值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。resize(num, elem);
:重新指定容器的长度为num,若容器变长,则以elem值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除。#include <list> void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } //大小操作 void test01() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); if (L1.empty()) { cout << "L1为空" << endl; } else { cout << "L1不为空" << endl; cout << "L1的大小为: " << L1.size() << endl; } //重新指定大小 L1.resize(10); printList(L1); L1.resize(2); printList(L1); } int main() { test01(); system("pause"); return 0; }
list容器以进行数据的插入和删除(注意,插入和删除的位置用的都是迭代器):
push_back(elem);
:/在容器尾部加入一个元素pop_back();
:删除容器中最后一个元素push_front(elem);
:在容器开头插入一个元素pop_front();
:从容器开头移除第一个元素insert(pos,elem);
:在pos位置插elem元素的拷贝,返回新数据的位置。insert(pos,n,elem);
:在pos位置插入n个elem数据,无返回值。insert(pos,beg,end);
:在pos位置插入[beg,end)区间的数据,无返回值。clear();
:移除容器的所有数据erase(beg,end);
:删除[beg,end)区间的数据,返回下一个数据的位置。erase(pos);
:删除pos位置的数据,返回下一个数据的位置。remove(elem);
:删除容器中所有与elem值匹配的元素。#include <list> void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } //插入和删除 void test01() { list<int> L; //尾插 L.push_back(10); L.push_back(20); L.push_back(30); //头插 L.push_front(100); L.push_front(200); L.push_front(300); printList(L); //尾删 L.pop_back(); printList(L); //头删 L.pop_front(); printList(L); //插入 list<int>::iterator it = L.begin(); L.insert(++it, 1000); printList(L); //删除 it = L.begin(); L.erase(++it); printList(L); //移除 L.push_back(10000); L.push_back(10000); L.push_back(10000); printList(L); L.remove(10000); printList(L); //清空 L.clear(); printList(L); } int main() { test01(); system("pause"); return 0; }
front();
:返回第一个元素。back();
:返回最后一个元素。#include <list> //数据存取 void test01() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); //cout << L1.at(0) << endl;//错误 不支持at访问数据 //cout << L1[0] << endl; //错误 不支持[]方式访问数据 cout << "第一个元素为: " << L1.front() << endl; cout << "最后一个元素为: " << L1.back() << endl; //list容器的迭代器是双向迭代器,不支持随机访问 list<int>::iterator it = L1.begin(); //it = it + 1;//错误,不可以跳跃访问,即使是+1 } int main() { test01(); system("pause"); return 0; }
reverse();
:反转链表。sort();
:链表排序。void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } bool myCompare(int val1 , int val2) { return val1 > val2; } //反转和排序 void test01() { list<int> L; L.push_back(90); L.push_back(30); L.push_back(20); L.push_back(70); printList(L); //反转容器的元素 L.reverse(); printList(L); //排序 L.sort(); //默认的排序规则 从小到大 printList(L); L.sort(myCompare); //指定规则,从大到小 printList(L); } int main() { test01(); system("pause"); return 0; }
注意,此时反转和排序用的是自定义的方法,而不是算法库中的算法。如果需要自定义排序规则,可以自己书写一个函数作为参数传入即可。比如让元素从大到小排序,只需要指定传入函数的第一个参数大于第二个参数时,返回true即可。
set/multiset属于关联式容器,底层结构是用二叉树实现。使用时,元素都会在插入时自动被排序。其中,set不允许容器中有重复的元素,而multiset允许容器中有重复的元素。
构造:
set<T> st;
:默认构造函数。set(const set &st);
:拷贝构造函数。赋值:
set& operator=(const set &st);
:重载等号操作符。#include <set> void printSet(set<int> & s) { for (set<int>::iterator it = s.begin(); it != s.end(); it++) { cout << *it << " "; } cout << endl; } //构造和赋值 void test01() { set<int> s1; s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); printSet(s1); //拷贝构造 set<int>s2(s1); printSet(s2); //赋值 set<int>s3; s3 = s2; printSet(s3); } int main() { test01(); system("pause"); return 0; }
size();
:返回容器中元素的数目。empty();
:判断容器是否为空。swap(st);
:换两个集合容器。#include <set> void printSet(set<int> & s) { for (set<int>::iterator it = s.begin(); it != s.end(); it++) { cout << *it << " "; } cout << endl; } //大小 void test01() { set<int> s1; s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); if (s1.empty()) { cout << "s1为空" << endl; } else { cout << "s1不为空" << endl; cout << "s1的大小为: " << s1.size() << endl; } } //交换 void test02() { set<int> s1; s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); set<int> s2; s2.insert(100); s2.insert(300); s2.insert(200); s2.insert(400); cout << "交换前" << endl; printSet(s1); printSet(s2); cout << endl; cout << "交换后" << endl; s1.swap(s2); printSet(s1); printSet(s2); } int main() { //test01(); test02(); system("pause"); return 0; }
set提供了对其内部的数据的相关操作,如下(注意,位置使用的都是迭代器):
insert(elem);
:在容器中插入元素。。clear();
:清除所有元素。erase(pos);
:删除pos迭代器所指的元素,返回下一个元素的迭代器。erase(beg, end);
:删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。erase(elem);
:删除容器中值为elem的元素。#include <set> void printSet(set<int> & s) { for (set<int>::iterator it = s.begin(); it != s.end(); it++) { cout << *it << " "; } cout << endl; } //插入和删除 void test01() { set<int> s1; //插入 s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); printSet(s1); //删除 s1.erase(s1.begin()); printSet(s1); s1.erase(30); printSet(s1); //清空 //s1.erase(s1.begin(), s1.end()); s1.clear(); printSet(s1); } int main() { test01(); system("pause"); return 0; }
find(key);
:查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();
。count(key);
:统计key的元素个数。#include <set> //查找和统计 void test01() { set<int> s1; //插入 s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); //查找 set<int>::iterator pos = s1.find(30); if (pos != s1.end()) { cout << "找到了元素 : " << *pos << endl; } else { cout << "未找到元素" << endl; } //统计 int num = s1.count(30); cout << "num = " << num << endl; } int main() { test01(); system("pause"); return 0; }
set不可以插入重复数据,而multiset可以;set插入数据的同时会返回插入结果(pair
类型),表示插入是否成功;multiset不会检测数据,因此可以插入重复数据,
#include <set> //set和multiset区别 void test01() { set<int> s; pair<set<int>::iterator, bool> ret = s.insert(10); if (ret.second) { cout << "第一次插入成功!" << endl; } else { cout << "第一次插入失败!" << endl; } ret = s.insert(10); if (ret.second) { cout << "第二次插入成功!" << endl; } else { cout << "第二次插入失败!" << endl; } //multiset multiset<int> ms; ms.insert(10); ms.insert(10); for (multiset<int>::iterator it = ms.begin(); it != ms.end(); it++) { cout << *it << " "; } cout << endl; } int main() { test01(); system("pause"); return 0; }
set容器默认排序规则为从小到大,利用仿函数,可以改变排序规则。
基本数据类型可控制排序方式:
#include <set> class MyCompare { public: bool operator()(int v1, int v2) { return v1 > v2; } }; void test01() { set<int> s1; s1.insert(10); s1.insert(40); s1.insert(20); s1.insert(30); s1.insert(50); //默认从小到大 for (set<int>::iterator it = s1.begin(); it != s1.end(); it++) { cout << *it << " "; } cout << endl; //指定排序规则 set<int,MyCompare> s2; s2.insert(10); s2.insert(40); s2.insert(20); s2.insert(30); s2.insert(50); for (set<int, MyCompare>::iterator it = s2.begin(); it != s2.end(); it++) { cout << *it << " "; } cout << endl; } int main() { test01(); system("pause"); return 0; }
自定义数据类型必须指定排序规则:
#include <set> #include <string> class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } string m_Name; int m_Age; }; class comparePerson { public: bool operator()(const Person& p1, const Person &p2) { //按照年龄进行排序 降序 return p1.m_Age > p2.m_Age; } }; void test01() { set<Person, comparePerson> s; Person p1("刘备", 23); Person p2("关羽", 27); Person p3("张飞", 25); Person p4("赵云", 21); s.insert(p1); s.insert(p2); s.insert(p3); s.insert(p4); for (set<Person, comparePerson>::iterator it = s.begin(); it != s.end(); it++) { cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age << endl; } } int main() { test01(); system("pause"); return 0; }
pair指的是成对出现的数据,利用对组可以返回两个数据。pair的创建方式如下:
pair<type, type> p ( value1, value2 );
pair<type, type> p = make_pair( value1, value2 );
#include <string> //对组创建 void test01() { pair<string, int> p(string("Tom"), 20); cout << "姓名: " << p.first << " 年龄: " << p.second << endl; pair<string, int> p2 = make_pair("Jerry", 10); cout << "姓名: " << p2.first << " 年龄: " << p2.second << endl; } int main() { test01(); system("pause"); return 0; }
map/multimap属于关联式容器,底层结构是用二叉树实现。容器中所有元素都是pair;pair中第一个元素为key(键值),起到索引作用,第二个元素为value(实值);所有元素都会根据元素的键值自动排序。map不允许容器中有重复key值元素,multimap允许容器中有重复key值元素。
构造:
map<T1, T2> mp;
:map默认构造函数。map(const map &mp);
:拷贝构造函数。赋值:
map& operator=(const map &mp);
:重载等号操作符。#include <map> void printMap(map<int,int>&m) { for (map<int, int>::iterator it = m.begin(); it != m.end(); it++) { cout << "key = " << it->first << " value = " << it->second << endl; } cout << endl; } void test01() { map<int,int>m; //默认构造 m.insert(pair<int, int>(1, 10)); m.insert(pair<int, int>(2, 20)); m.insert(pair<int, int>(3, 30)); printMap(m); map<int, int>m2(m); //拷贝构造 printMap(m2); map<int, int>m3; m3 = m2; //赋值 printMap(m3); } int main() { test01(); system("pause"); return 0; }
size();
:返回容器中元素的数目。empty();
:判断容器是否为空。swap(st);
:交换两个集合容器。#include <map> void printMap(map<int,int>&m) { for (map<int, int>::iterator it = m.begin(); it != m.end(); it++) { cout << "key = " << it->first << " value = " << it->second << endl; } cout << endl; } void test01() { map<int, int>m; m.insert(pair<int, int>(1, 10)); m.insert(pair<int, int>(2, 20)); m.insert(pair<int, int>(3, 30)); if (m.empty()) { cout << "m为空" << endl; } else { cout << "m不为空" << endl; cout << "m的大小为: " << m.size() << endl; } } //交换 void test02() { map<int, int>m; m.insert(pair<int, int>(1, 10)); m.insert(pair<int, int>(2, 20)); m.insert(pair<int, int>(3, 30)); map<int, int>m2; m2.insert(pair<int, int>(4, 100)); m2.insert(pair<int, int>(5, 200)); m2.insert(pair<int, int>(6, 300)); cout << "交换前" << endl; printMap(m); printMap(m2); cout << "交换后" << endl; m.swap(m2); printMap(m); printMap(m2); } int main() { test01(); test02(); system("pause"); return 0; }
map容器可以进行插入数据和删除数据,方法如下(注意,所有位置参数用的都是迭代器):
insert(elem);
:在容器中插入元素。clear();
:清除所有元素。erase(pos);
:删除pos迭代器所指的元素,返回下一个元素的迭代器。erase(beg, end);
:删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。erase(key);
:删除容器中值为key的元素。#include <map> void printMap(map<int,int>&m) { for (map<int, int>::iterator it = m.begin(); it != m.end(); it++) { cout << "key = " << it->first << " value = " << it->second << endl; } cout << endl; } void test01() { //插入 map<int, int> m; //第一种插入方式 m.insert(pair<int, int>(1, 10)); //第二种插入方式 m.insert(make_pair(2, 20)); //第三种插入方式 m.insert(map<int, int>::value_type(3, 30)); //第四种插入方式 m[4] = 40; printMap(m); //删除 m.erase(m.begin()); printMap(m); m.erase(3); printMap(m); //清空 m.erase(m.begin(),m.end()); m.clear(); printMap(m); } int main() { test01(); system("pause"); return 0; }
不建议使用第四种插入方式,尽管简单,但是如果我们map中没有该key值,会自动插入一个key为该值,value为0的对组。
find(key);
:查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();
。count(key);
:统计key的元素个数。#include <map> //查找和统计 void test01() { map<int, int>m; m.insert(pair<int, int>(1, 10)); m.insert(pair<int, int>(2, 20)); m.insert(pair<int, int>(3, 30)); //查找 map<int, int>::iterator pos = m.find(3); if (pos != m.end()) { cout << "找到了元素 key = " << (*pos).first << " value = " << (*pos).second << endl; } else { cout << "未找到元素" << endl; } //统计 int num = m.count(3); cout << "num = " << num << endl; } int main() { test01(); system("pause"); return 0; }
注意,对于multimap,如果存放多个key相同的pair,则会返回指向第一个查找到的pair的迭代器。
int main()
{
multimap<int, int> m_map;
m_map.insert(pair<int, int>(1, 18));
m_map.insert(pair<int, int>(1, 15));
auto it = m_map.find(1);
cout << it->second << endl;
cin.get();
}
[key]
符号可以对map容器中指定key对应的value进行访问。[key]=new_value
的方式可以对指定key对应的value进行修改。#include<iostream> #include<map> using namespace std; int main() { map<int, int> m; m.insert(pair<int, int>(1, 10)); m[1] = 15; cout << m[1] << endl; //不允许 //multimap<int, int> m_map; //m_map.insert(pair<int, int>(1, 10)); //m_map[1]; cin.get(); }
map容器默认排序规则为按照key值进行从小到大排序,通过仿函数可以改变规则。下面展示内置数据类型的规则定义和使用方式,自定义数据类型也类似,不再举例。
#include <map> class MyCompare { public: bool operator()(int v1, int v2) { return v1 > v2; } }; void test01() { //默认从小到大排序 //利用仿函数实现从大到小排序 map<int, int, MyCompare> m; m.insert(make_pair(1, 10)); m.insert(make_pair(2, 20)); m.insert(make_pair(3, 30)); m.insert(make_pair(4, 40)); m.insert(make_pair(5, 50)); for (map<int, int, MyCompare>::iterator it = m.begin(); it != m.end(); it++) { cout << "key:" << it->first << " value:" << it->second << endl; } } int main() { test01(); system("pause"); return 0; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。