赞
踩
本期文章采用五大经典的智能优化算法,对机器人路径进行规划。
五大经典算法分别是:粒子群算法(PSO),遗传算法(GA),差分进化算法(DE),灰狼优化算法(GWO),麻雀优化算法(SSA)。
学会这五种算法后,其他任何智能优化算法可以随意替换!地图也是可以随意更改!
参考一些论文,还可以将改进的智能算法用于机器人路径规划中,突出改进智能算法的优势!
接下来先上结果图:其中,红线表示遗传算法,黄线表示麻雀算法,蓝线表示粒子群算法,绿线表示差分进化算法,青线表示灰狼算法。
简单路径规划结果
复杂路径规划结果
在复杂路径下,其实更能展现一个算法的优劣!因此可以将改进的智能算法用于此模型中,算法替换十分简单!
部分代码展示
clc clear close all tic %% 地图 G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0; 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0; 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0; 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0; 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0; 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0; 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0; 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;]; num = size(G,1); for i=1:num/2 for j=1:num m=G(i,j); n=G(num+1-i,j); G(i,j)=n; G(num+1-i,j)=m; end end %% S = [1 1]; E = [num num]; G0 = G; G = G0(S(1):E(1),S(2):E(2)); [Xmax,dimensions] = size(G); X_min = 1; dimensions = dimensions - 2; %% 参数设置 max_gen = 100; % 最大迭代次数 num_polution = 50; % 种群数量 fobj=@(x)fitness(x,G); [Best_score,Best_pos,GA_curve]=GA(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G); %结果分析 Best_pos = round(Best_pos); disp(['GA算法寻优得到的最短路径是:',num2str(Best_score)]) route = [S(1) Best_pos E(1)]; path_GA=generateContinuousRoute(route,G); path_GA=GenerateSmoothPath(path_GA,G); path_GA=GenerateSmoothPath(path_GA,G); [Best_score,Best_pos,SSA_curve]=SSA(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G); %结果分析 Best_pos = round(Best_pos); disp(['SSA算法寻优得到的最短路径是:',num2str(Best_score)]) route = [S(1) Best_pos E(1)]; path_SSA=generateContinuousRoute(route,G); path_SSA=GenerateSmoothPath(path_SSA,G); path_SSA=GenerateSmoothPath(path_SSA,G); [Best_score,Best_pos,PSO_curve]=PSO(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G); %结果分析 Best_pos = round(Best_pos); disp(['PSO算法寻优得到的最短路径是:',num2str(Best_score)]) route = [S(1) Best_pos E(1)]; path_PSO=generateContinuousRoute(route,G); path_PSO=GenerateSmoothPath(path_PSO,G); path_PSO=GenerateSmoothPath(path_PSO,G); [Best_score,Best_pos,DE_curve]=DE(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G); %结果分析 Best_pos = round(Best_pos); disp(['DE算法寻优得到的最短路径是:',num2str(Best_score)]) route = [S(1) Best_pos E(1)]; path_DE=generateContinuousRoute(route,G); path_DE=GenerateSmoothPath(path_DE,G); path_DE=GenerateSmoothPath(path_DE,G); [Best_score,Best_pos,GWO_curve]=GWO(num_polution,max_gen,X_min,Xmax,dimensions,fobj,G); %结果分析 Best_pos = round(Best_pos); disp(['GWO算法寻优得到的最短路径是:',num2str(Best_score)]) route = [S(1) Best_pos E(1)]; path_GWO=generateContinuousRoute(route,G); path_GWO=GenerateSmoothPath(path_GWO,G); path_GWO=GenerateSmoothPath(path_GWO,G); %% 画寻优曲线 figure(1) plot(GA_curve,'k-o') hold on plot(SSA_curve,'y-^') hold on plot(PSO_curve,'b-*') hold on plot(DE_curve,'g-P') hold on plot(GWO_curve,'c-v') legend('GA','SSA','PSO','DE','GWO') title('简单路径下各算法的收敛曲线')
代码目录
其中simplemain.m是简单路径规划,complexmain.m是复杂路径规划。运行这两个脚本文件即可!
点击下方卡片获取更多代码!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。