当前位置:   article > 正文

回归预测 | MATLAB实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型_foa-bp神经网络模型代码

foa-bp神经网络模型代码

回归预测 | MATLAB实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型

效果一览

1
2

4

基本介绍

果蝇算法(FOA)优化BP神经网络回归预测,FOA-BP回归预测,多变量输入模型
1.输入多个特征,输出单个变量,多输入单输出;
2.评价指标包括MAPE、RMSE、MSE;
3.果蝇算法(FOA)优化BP神经网络权值和阈值。

3

FOA-BP算法是一种基于果蝇算法和BP神经网络的优化算法,用于多变量输入回归预测模型的优化。
在FOA-BP算法中,首先使用果蝇算法对BP神经网络的初始权值和偏置进行优化,以提高BP神经网络的性能和收敛速度。然后,使用优化后的BP神经网络对多变量输入进行回归预测。
FOA-BP算法的优点是可以提高BP神经网络的性能和收敛速度,同时可以更好地处理多变量输入的回归预测问题。此外,该算法还具有较好的鲁棒性和泛化能力,适用于不同的数据集和预测问题。
需要注意的是,FOA-BP算法需要进行大量的计算和参数调整,因此在应用时需要进行充分的实验和验证,以确保算法的可靠性和有效性。

程序设计

% X = zeros(1 * dim);
% Y = zeros(1 * dim);
% new_X = zeros(1 * dim);
% new_Y = zeros(1 * dim);
% D = zeros(1 * dim);
% Sol = zeros(1 * dim);
% Fitness = zeros(n * 1);
net = {};%用于存储网络
% Initialize the original position
for i = 1:n
    X(i,:) = lb+(ub-lb).*rand(1,dim); % the position of X axis
    Y(i,:) = lb+(ub-lb).*rand(1,dim); % the position of Y axis
    D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5; % Caculate the distance
    Sol(i,:) = 1./D(i,:); % the solution set
    [Fitness(i),net{i}] = fun(Sol(i,:)); % Caculate the fitness
end


[bestSmell,index] = min(Fitness); % Get the min fitness and its index
new_X = X(index,:); % the X axis of min fitness
new_Y = Y(index,:); % the Y axis of min fitness
Smellbest = bestSmell;
best = Sol(index,:);
BestNet = net{index};%最佳网络
% Start main loop
for t = 1:maxt
    disp(['第',num2str(t),'次迭代'])
    for i = 1:n
        % Refer to the process of initializing
        X(i,:) = new_X + (ub - lb).*rand();
        Y(i,:) = new_Y + (ub - lb).*rand();
        D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5;
        Sol(i,:) = 1./D(i,:);
        [Fitness(i),net{i}] = fun(Sol(i,:));
    end
    [bestSmell,index] = min(Fitness);
    % If the new value is smaller than the best value,update the best value
    if (bestSmell < Smellbest)
        X(i,:) = X(index,:);
        Y(i,:) = Y(index,:);
        Smellbest = bestSmell;
        BestNet = net{index};
    end
    
    % Out put result each 100 iterations
    if round(t/100) == (t/100)
        Smellbest;
    end
    
    cg_curve(t) = Smellbest;
    bestFitValue = Smellbest;
    bestSolution = best;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/525505?site
推荐阅读
相关标签
  

闽ICP备14008679号