赞
踩
果蝇算法(FOA)优化BP神经网络回归预测,FOA-BP回归预测,多变量输入模型
1.输入多个特征,输出单个变量,多输入单输出;
2.评价指标包括MAPE、RMSE、MSE;
3.果蝇算法(FOA)优化BP神经网络权值和阈值。
FOA-BP算法是一种基于果蝇算法和BP神经网络的优化算法,用于多变量输入回归预测模型的优化。
在FOA-BP算法中,首先使用果蝇算法对BP神经网络的初始权值和偏置进行优化,以提高BP神经网络的性能和收敛速度。然后,使用优化后的BP神经网络对多变量输入进行回归预测。
FOA-BP算法的优点是可以提高BP神经网络的性能和收敛速度,同时可以更好地处理多变量输入的回归预测问题。此外,该算法还具有较好的鲁棒性和泛化能力,适用于不同的数据集和预测问题。
需要注意的是,FOA-BP算法需要进行大量的计算和参数调整,因此在应用时需要进行充分的实验和验证,以确保算法的可靠性和有效性。
% X = zeros(1 * dim); % Y = zeros(1 * dim); % new_X = zeros(1 * dim); % new_Y = zeros(1 * dim); % D = zeros(1 * dim); % Sol = zeros(1 * dim); % Fitness = zeros(n * 1); net = {};%用于存储网络 % Initialize the original position for i = 1:n X(i,:) = lb+(ub-lb).*rand(1,dim); % the position of X axis Y(i,:) = lb+(ub-lb).*rand(1,dim); % the position of Y axis D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5; % Caculate the distance Sol(i,:) = 1./D(i,:); % the solution set [Fitness(i),net{i}] = fun(Sol(i,:)); % Caculate the fitness end [bestSmell,index] = min(Fitness); % Get the min fitness and its index new_X = X(index,:); % the X axis of min fitness new_Y = Y(index,:); % the Y axis of min fitness Smellbest = bestSmell; best = Sol(index,:); BestNet = net{index};%最佳网络 % Start main loop for t = 1:maxt disp(['第',num2str(t),'次迭代']) for i = 1:n % Refer to the process of initializing X(i,:) = new_X + (ub - lb).*rand(); Y(i,:) = new_Y + (ub - lb).*rand(); D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5; Sol(i,:) = 1./D(i,:); [Fitness(i),net{i}] = fun(Sol(i,:)); end [bestSmell,index] = min(Fitness); % If the new value is smaller than the best value,update the best value if (bestSmell < Smellbest) X(i,:) = X(index,:); Y(i,:) = Y(index,:); Smellbest = bestSmell; BestNet = net{index}; end % Out put result each 100 iterations if round(t/100) == (t/100) Smellbest; end cg_curve(t) = Smellbest; bestFitValue = Smellbest; bestSolution = best;
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。