当前位置:   article > 正文

python中seaborn安装方法-Seaborn安装入门及常用方法

seaborn安装

Seaborn是基于matplotlib产生的一个模块,专攻于统计可视化,可以和pandas进行无缝链接,使初学者更容易上手。相对于matplotlib,Seaborn语法更简洁,两者关系类似于numpy和pandas之间的关系。

2.1安装:

1)linux系统

sudo pip install seaborn

2)window系统

pip install seaborn

2.2快速入门

import  as sns

sns.set(style="ticks")

from matplotlib import pyplot

# 加载数据集

tips = sns.load_dataset("tips")

# 绘图

sns.boxplot(x="day", y="total_bill", hue="sex", data=tips, palette="PRGn")

sns.despine(offset=10, trim=True)

#图片展示与保存

pyplot.savefig("GroupedBoxplots.png")

pyplot.show()

2.3seaborn常用方法

1、单变量分析绘图

1)分布的集中趋势,反映数据向其中心值靠拢或聚集的程度

x = np.random.normal(size=100)

sns.distplot(x, kde=True)# kde=False关闭核密度分布, rug表示在x轴上每个观测上生成的小细条(边际毛毯)

2、观测两个变量之间的分布关系最好用散点图

1)直接拟合概率密度函数

sns.jointplot(x="x", y="y", data=df, kind="kde")

2)能够更加直观反映点的分布情况

hex图 (数据量大的时候)¶

最好黑白相间

数据量大时候,用hex图,分辨出哪块更多(颜色深浅)

mean, cov = [0, 1], [(1, .5), (.5, 1)]

data = np.random.multivariate_normal(mean, cov, 200)

df = pd.DataFrame(data, colum

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/531408
推荐阅读
相关标签
  

闽ICP备14008679号