当前位置:   article > 正文

leetCode 123.买卖股票的最佳时机 III 动态规划 + 状态压缩_买卖股票的最好时机3 leetcode

买卖股票的最好时机3 leetcode

123. 买卖股票的最佳时机 III - 力扣(LeetCode)

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
     随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
     随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 3:

输入:prices = [7,6,4,3,1] 
输出:0 
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。

示例 4:

输入:prices = [1]
输出:0

>>思路和分析

这道题目相对leetCode 121.买卖股票的最佳时机 和 leetCode 122.买卖股票的最佳时机 II难了不少关键在于至多买卖几次,意味着可以买卖一次,可以买卖两次,也可以不买卖。

>>动规五部曲

1.确定dp数组以及下标的含义

一天 一共有 5 个 状态 ,dp[i][j] 中 i 表示 第 i 天,j 为[0 - 4] 五个状态,dp[i][j]表示第 i 天状态 j所剩最大现金

  • 0.没有操作(其实也可以不设置这个状态)
  • 1.第一次持有股票
  • 2.第一次不持有股票
  • 3.第二次持有股票
  • 4.第二次不持有股票

"持有" : 不代表就是当天"买入"!可能昨天就买入了,今天保持有的状态

2.确定递推公式

3.dp数组初始化

  1. dp[0][0] = 0;
  2. dp[0][1] = -prices[0];
  3. dp[0][2] = 0;
  4. dp[0][3] = -prices[0];
  5. dp[0][4] = 0;

4.确定遍历顺序

递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值

5.举例推导dp数组

以输入[1,2,3,4,5]为例

  1. class Solution {
  2. public:
  3. int maxProfit(vector<int>& prices) {
  4. int len = prices.size();
  5. if (len == 0) return 0;
  6. vector<vector<int>> dp(len, vector<int>(5, 0));
  7. dp[0][1] = -prices[0];
  8. dp[0][3] = -prices[0];
  9. for (int i = 1; i < len; i++) {
  10. // dp[i][0] = dp[i - 1][0];
  11. dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
  12. dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
  13. dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
  14. dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
  15. }
  16. return dp[len - 1][4];
  17. }
  18. };

其实可以不设置,‘0. 没有操作’ 这个状态,因为没有操作,手上的现金自然就是0, 正如在 leetCode 121.买卖股票的最佳时机和 leetCode 122.买卖股票的最佳时机 II也没有设置这一状态是一样的。 

  • 时间复杂度:O(n)
  • 空间复杂度:O(n × 4)

>>状态压缩

摘取自代码随想录代码随想录 (programmercarl.com)

  • dp[1] = max(dp[1], dp[0] - prices[i]); 如果dp[1]取dp[1],即保持买入股票的状态,那么 dp[2] = max(dp[2], dp[1] + prices[i]);中dp[1] + prices[i] 就是今天卖出。
  • 如果dp[1]取dp[0] - prices[i],今天买入股票,那么dp[2] = max(dp[2], dp[1] + prices[i]);中的dp[1] + prices[i]相当于是今天再卖出股票,一买一卖收益为0,对所得现金没有影响。相当于今天买入股票又卖出股票,等于没有操作,保持昨天卖出股票的状态了。
  1. // 状态压缩
  2. class Solution {
  3. public:
  4. int maxProfit(vector<int>& prices) {
  5. if(prices.size() == 0) return 0;
  6. int len = prices.size();
  7. vector<int> dp(5,0);
  8. dp[1] = -prices[0];
  9. dp[3] = -prices[0];
  10. for(int i=1;i<len;i++) {
  11. dp[1] = max(dp[1],dp[0] - prices[i]);
  12. dp[2] = max(dp[2],dp[1] + prices[i]);
  13. dp[3] = max(dp[3],dp[2] - prices[i]);
  14. dp[4] = max(dp[4],dp[3] + prices[i]);
  15. }
  16. return dp[4];
  17. }
  18. };
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

参考和推荐文章、视频

代码随想录 (programmercarl.com)

动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III_哔哩哔哩_bilibili

来自代码随想录课堂截图:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/570259
推荐阅读
相关标签
  

闽ICP备14008679号