赞
踩
为了防止在训练集上过拟合,有两种办法,第一种是扩大训练集数量,但是需要大量的成本;第二种就是应用迁移学习,将源数据学习到的知识迁移到目标数据集,即在把在源数据训练好的参数和模型(除去输出层)直接复制到目标数据集训练。
- # IPython魔法函数,可以不用执行plt .show()
- %matplotlib inline
- import os
- import torch
- import torchvision
- from torch import nn
- from d2l import torch as d2l
- #@save
- d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip',
- 'fba480ffa8aa7e0febbb511d181409f899b9baa5')
-
- data_dir = d2l.download_extract('hotdog')
- train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'))
- test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'))
- hotdogs = [train_imgs[i][0] for i in range(8)]
- not_hotdogs = [train_imgs[-i-1][0] for i in range(8)]
- # 展示2行8列矩阵的图片,共16张
- d2l.show_images(hotdogs+not_hotdogs,2,8,scale=1.5)
- # 使用RGB通道的均值和标准差,以标准化每个通道
- normalize = torchvision.transforms.Normalize(
- [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
- # 图像增广
- train_augs = torchvision.transforms.Compose([
- torchvision.transforms.RandomResizedCrop(224),
- torchvision.transforms.RandomHorizontalFlip(),
- torchvision.transforms.ToTensor(),
- normalize])
- test_augs = torchvision.transforms.Compose([
- torchvision.transforms.Resize([256, 256]),
- torchvision.transforms.CenterCrop(224),
- torchvision.transforms.ToTensor(),
- normalize])
- # 自动下载网上的训练模型
- finetune_net = torchvision.models.resnet18(pretrained=True)
- # 输入张量的形状还是源输入张量大小,输入张量大小改为2
- finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
- nn.init.xavier_uniform_(finetune_net.fc.weight);
- # 如果param_group=True,输出层中的模型参数将使用十倍的学习率
- # 如果param_group=False,输出层中模型参数为随机值
- # 训练模型
- def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5,
- param_group=True):
- train_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
- os.path.join(data_dir, 'train'), transform=train_augs),
- batch_size=batch_size, shuffle=True)
- test_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
- os.path.join(data_dir, 'test'), transform=test_augs),
- batch_size=batch_size)
- devices = d2l.try_all_gpus()
- loss = nn.CrossEntropyLoss(reduction="none")
- if param_group:
- params_1x = [param for name, param in net.named_parameters()
- if name not in ["fc.weight", "fc.bias"]]
- # params_1x的参数使用learning_rate学习率, net.fc.parameters()的参数使用0.001的学习率
- trainer = torch.optim.SGD([{'params': params_1x},
- {'params': net.fc.parameters(),
- 'lr': learning_rate * 10}],
- lr=learning_rate, weight_decay=0.001)
- else:
- trainer = torch.optim.SGD(net.parameters(), lr=learning_rate,
- weight_decay=0.001)
- d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
- devices)
- train_fine_tuning(finetune_net, 5e-5)
有时候不仅要识别图像的类别,还需要识别图像的位置。在计算机视觉中叫做目标识别或者目标检测。这小节是介绍目标检测的深度学习方法。
- %matplotlib inline
- import torch
- from d2l import torch as d2l
- #@save
- def box_corner_to_center(boxes):
- """从(左上,右下)转换到(中间,宽度,高度)"""
- x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
- # cx,xy,w,h的维度是n
- cx = (x1 + x2) / 2
- cy = (y1 + y2) / 2
- w = x2 - x1
- h = y2 - y1
- # torch.stack()沿着新维度对张量进行链接。boxes最开始维度是(n,4),axis=-1表示倒数第一个维度
- # torch.stack()将(cx, cy, w, h)的维度n将其沿着倒数第一个维度拼接在一起,又是(n,4)
- boxes = torch.stack((cx, cy, w, h), axis=-1)
- return boxes
-
- #@save
- def box_center_to_corner(boxes):
- """从(中间,宽度,高度)转换到(左上,右下)"""
- cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
- x1 = cx - 0.5 * w
- y1 = cy - 0.5 * h
- x2 = cx + 0.5 * w
- y2 = cy + 0.5 * h
- boxes = torch.stack((x1, y1, x2, y2), axis=-1)
- return boxes
目标检测算法通常会在图像中采集大量的样本,本小节介绍其中一个采样办法:以某个像素为中心,生成多个不同缩放比和宽高比的边界框。
- %matplotlib inline
- import torch
- from d2l import torch as d2l
-
- torch.set_printoptions(2) # 精简输出精度,显示小数点后2位
- """
- 形成多个锚框
- params:
- data:图像(批量大小,通道数,高,宽)
- sizes:缩放比尺寸集合
- ratios:宽高比集合
-
- """
- def multibox_prior(data, sizes, ratios):
- # 获取data后两位的值,也就是图像的高和宽
- in_height, in_width = data.shape[-2:]
- """
- params:
- device:cpu或者gpu
- num_sizes:尺寸的个数n
- num_ratios:宽高比个数m
- """
- device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)
- # 以同一像素为中心的锚框数量n+m-1
- boxes_per_pixel = (num_sizes + num_ratios - 1)
- size_tensor = torch.tensor(sizes, device=device)
- ratio_tensor = torch.tensor(ratios, device=device)
-
- # offset:为了将锚点移动到像素的中心,需要设置偏移量。
- # steps:归一化,将宽高规化到0-1之间,因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5
- offset_h, offset_w = 0.5, 0.5
- steps_h = 1.0 / in_height # 在y轴上缩放步长
- steps_w = 1.0 / in_width # 在x轴上缩放步长
-
- # 假设宽高512*216 那么torch.arange(in_height, device=device)=【0,1,2...511】,移动到中心就是[0.5,1.5...511.5]
- # 第一步:torch.arange(in_height, device=device) + offset_h代表移动到每个像素的中心,因为每个像素1*1大小.
- # 第二步:宽高进行归一化
- center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
- center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
- """
- a = torch.tensor([1, 2, 3, 4])
- b = torch.tensor([4, 5, 6])
- x, y = torch.meshgrid(a, b,indexing='ij')
- print:tensor([[1, 1, 1],
- [2, 2, 2],
- [3, 3, 3],
- [4, 4, 4]])
- tensor([[4, 5, 6],
- [4, 5, 6],
- [4, 5, 6],
- [4, 5, 6]])
- x, y = torch.meshgrid(a, b,indexing='xy')
- print:tensor([[1, 2, 3, 4],
- [1, 2, 3, 4],
- [1, 2, 3, 4]])
- tensor([[4, 4, 4, 4],
- [5, 5, 5, 5],
- [6, 6, 6, 6]])
- """
- # 对比上面例子,假设center_h=tensor([0.5,1.5...511.5])(实际上是0-1的值,这里为了简单理解写成这样)
- # 则shift_y=tensor([0.5,0.5..],[1.5,1.5,...],...[511.5,511.5...])
- shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')
- # 将shift展平成一维序列,用上述的例子则shift_y为tensor([0.5,0.5...511.5,511.5])
- shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)
- # 宽=h*s*sqrt(r)
- # 由于锚框只考虑s1和r1的组合,r1组合就是size_tensor * torch.sqrt(ratio_tensor[0]),s1组合就是sizes[0] * torch.sqrt(ratio_tensor[1:])
- # 此处要乘上in_height / in_width是因为,假设此时ratios宽高比为1,那么默认w=h,但是实际上ratios代表与原图宽高比一致,举个例子
- # 假设原图1000*10,那么当ratios为1时,此时w=h,而我们需要的是w/h = 1000/10,所以需要乘上in_height / in_width来与原尺寸保持一致
- w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),
- sizes[0] * torch.sqrt(ratio_tensor[1:])))\
- * in_height / in_width # 处理矩形输入
- h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),
- sizes[0] / torch.sqrt(ratio_tensor[1:])))
- # 除以2来获得半高和半宽
- # 每一行(-w, -h, w, h)对应一个锚框一个锚框的左上角偏差和右下角偏差
- anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
- in_height * in_width, 1) / 2
-
- # 每个中心点都将有boxes_per_pixel=(n+m-1)个锚框,
- # 形状:(w*h*(n+m-1), 4)
- out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],
- dim=1).repeat_interleave(boxes_per_pixel, dim=0)
- output = out_grid + anchor_manipulations
- # 添加一个维度
- return output.unsqueeze(0)
-
- img = d2l.plt.imread('../data/img/catdog.jpg')
- h, w = img.shape[:2] # (1080, 1920)
- X = torch.rand(size=(1, 3, h, w))
- Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
- print(Y.shape)
- # 即将Y变成(高,宽,以同一像素点为中心的锚框数,4)
- # 每个锚框有四个元素(锚框的左上角x,y坐标和锚框右下角的x,y坐标)
- # n+m-1=3+3-1=5
- boxes = Y.reshape(h, w, 5, 4)
- # 访问以(250,250)为中心的第一个锚框
- boxes[250, 250, 0, :]
- # 显示以某个像素点为中心的所有锚框
- """
- params:
- axes:图像坐标
- bboxes:某个像素点中心坐标
- labels:显示文本,例如s=0.2,r=1
- colors:锚框的颜色
- """
- def show_bboxes(axes, bboxes, labels=None, colors=None):
- """显示所有边界框"""
- def _make_list(obj, default_values=None):
- if obj is None:
- obj = default_values
- elif not isinstance(obj, (list, tuple)):
- obj = [obj]
- return obj
-
- labels = _make_list(labels)
- colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
- for i, bbox in enumerate(bboxes):
- color = colors[i % len(colors)]
- # bbox_to_rect将边界框(左上x,左上y,右下x,右下y)格式转换成matplotlib格式:
- # ((左上x,左上y),宽,高)
- rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)
- axes.add_patch(rect)
- if labels and len(labels) > i:
- text_color = 'k' if color == 'w' else 'w'
- axes.text(rect.xy[0], rect.xy[1], labels[i],
- va='center', ha='center', fontsize=9, color=text_color,
- bbox=dict(facecolor=color, lw=0))
- d2l.set_figsize()
- bbox_scale = torch.tensor((w, h, w, h))
- fig = d2l.plt.imshow(img)
- show_bboxes(fig.axes, boxes[750, 750, :, :] * bbox_scale,
- ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
- 's=0.75, r=0.5'])
- # 衡量锚框与真实框之间或者锚框与锚框之间的相似度,即A∩B/A∪B
- def box_iou(boxes1, boxes2):
- """计算两个锚框或边界框列表中成对的交并比"""
- box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *
- (boxes[:, 3] - boxes[:, 1]))
- # boxes1,boxes2,areas1,areas2的形状:
- # boxes1:(boxes1的数量,4),
- # boxes2:(boxes2的数量,4),
- # areas1:(boxes1的数量,),
- # areas2:(boxes2的数量,)
- areas1 = box_area(boxes1)
- areas2 = box_area(boxes2)
- # inter_upperlefts,inter_lowerrights,inters的形状:
- # (boxes1的数量,boxes2的数量,2)
- inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
- inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
- inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
- # inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)
- inter_areas = inters[:, :, 0] * inters[:, :, 1]
- union_areas = areas1[:, None] + areas2 - inter_areas
- return inter_areas / union_areas
- %matplotlib inline
- import torch
- from d2l import torch as d2l
-
- torch.set_printoptions(2) # 精简输出精度,显示小数点后2位
- """
- 形成多个锚框
- params:
- data:图像(批量大小,通道数,高,宽)
- sizes:缩放比尺寸集合
- ratios:宽高比集合
-
- """
- def multibox_prior(data, sizes, ratios):
- # 获取data后两位的值,也就是图像的高和宽
- in_height, in_width = data.shape[-2:]
- """
- params:
- device:cpu或者gpu
- num_sizes:尺寸的个数n
- num_ratios:宽高比个数m
- """
- device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)
- # 以同一像素为中心的锚框数量n+m-1
- boxes_per_pixel = (num_sizes + num_ratios - 1)
- size_tensor = torch.tensor(sizes, device=device)
- ratio_tensor = torch.tensor(ratios, device=device)
-
- # offset:为了将锚点移动到像素的中心,需要设置偏移量。
- # steps:归一化,将宽高规化到0-1之间,因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5
- offset_h, offset_w = 0.5, 0.5
- steps_h = 1.0 / in_height # 在y轴上缩放步长
- steps_w = 1.0 / in_width # 在x轴上缩放步长
-
- # 假设宽高512*216 那么torch.arange(in_height, device=device)=【0,1,2...511】,移动到中心就是[0.5,1.5...511.5]
- # 第一步:torch.arange(in_height, device=device) + offset_h代表移动到每个像素的中心,因为每个像素1*1大小.
- # 第二步:宽高进行归一化
- center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
- center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
- """
- a = torch.tensor([1, 2, 3, 4])
- b = torch.tensor([4, 5, 6])
- x, y = torch.meshgrid(a, b,indexing='ij')
- print:tensor([[1, 1, 1],
- [2, 2, 2],
- [3, 3, 3],
- [4, 4, 4]])
- tensor([[4, 5, 6],
- [4, 5, 6],
- [4, 5, 6],
- [4, 5, 6]])
- x, y = torch.meshgrid(a, b,indexing='xy')
- print:tensor([[1, 2, 3, 4],
- [1, 2, 3, 4],
- [1, 2, 3, 4]])
- tensor([[4, 4, 4, 4],
- [5, 5, 5, 5],
- [6, 6, 6, 6]])
- """
- # 对比上面例子,假设center_h=tensor([0.5,1.5...511.5])(实际上是0-1的值,这里为了简单理解写成这样)
- # 则shift_y=tensor([0.5,0.5..],[1.5,1.5,...],...[511.5,511.5...])
- shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')
- # 将shift展平成一维序列,用上述的例子则shift_y为tensor([0.5,0.5...511.5,511.5])
- shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)
- # 宽=h*s*sqrt(r)
- # 由于锚框只考虑s1和r1的组合,r1组合就是size_tensor * torch.sqrt(ratio_tensor[0]),s1组合就是sizes[0] * torch.sqrt(ratio_tensor[1:])
- # 此处要乘上in_height / in_width是因为,假设此时ratios宽高比为1,那么默认w=h,但是实际上ratios代表与原图宽高比一致,举个例子
- # 假设原图1000*10,那么当ratios为1时,此时w=h,而我们需要的是w/h = 1000/10,所以需要乘上in_height / in_width来与原尺寸保持一致
- w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),
- sizes[0] * torch.sqrt(ratio_tensor[1:])))\
- * in_height / in_width # 处理矩形输入
- h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),
- sizes[0] / torch.sqrt(ratio_tensor[1:])))
- # 除以2来获得半高和半宽
- # 每一行(-w, -h, w, h)对应一个锚框一个锚框的左上角偏差和右下角偏差
- anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
- in_height * in_width, 1) / 2
-
- # 每个中心点都将有boxes_per_pixel=(n+m-1)个锚框,
- # 形状:(w*h*(n+m-1), 4)
- out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],
- dim=1).repeat_interleave(boxes_per_pixel, dim=0)
- output = out_grid + anchor_manipulations
- # 添加一个维度
- return output.unsqueeze(0)
-
- img = d2l.plt.imread('../data/img/catdog.jpg')
- h, w = img.shape[:2] # (1080, 1920)
- X = torch.rand(size=(1, 3, h, w))
- Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
- print(Y.shape)
- # 即将Y变成(高,宽,以同一像素点为中心的锚框数,4)
- # 每个锚框有四个元素(锚框的左上角x,y坐标和锚框右下角的x,y坐标)
- # n+m-1=3+3-1=5
- boxes = Y.reshape(h, w, 5, 4)
- # 访问以(250,250)为中心的第一个锚框
- boxes[250, 250, 0, :]
- # 显示以某个像素点为中心的所有锚框
- """
- params:
- axes:图像坐标
- bboxes:某个像素点中心坐标
- labels:显示文本,例如s=0.2,r=1
- colors:锚框的颜色
- """
- def show_bboxes(axes, bboxes, labels=None, colors=None):
- """显示所有边界框"""
- def _make_list(obj, default_values=None):
- if obj is None:
- obj = default_values
- elif not isinstance(obj, (list, tuple)):
- obj = [obj]
- return obj
-
- labels = _make_list(labels)
- colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
- for i, bbox in enumerate(bboxes):
- color = colors[i % len(colors)]
- # bbox_to_rect将边界框(左上x,左上y,右下x,右下y)格式转换成matplotlib格式:
- # ((左上x,左上y),宽,高)
- rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)
- axes.add_patch(rect)
- if labels and len(labels) > i:
- text_color = 'k' if color == 'w' else 'w'
- axes.text(rect.xy[0], rect.xy[1], labels[i],
- va='center', ha='center', fontsize=9, color=text_color,
- bbox=dict(facecolor=color, lw=0))
- d2l.set_figsize()
- bbox_scale = torch.tensor((w, h, w, h))
- fig = d2l.plt.imshow(img)
- show_bboxes(fig.axes, boxes[750, 750, :, :] * bbox_scale,
- ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
- 's=0.75, r=0.5'])
- # 衡量锚框与真实框之间或者锚框与锚框之间的相似度,即A∩B/A∪B
- def box_iou(boxes1, boxes2):
- """计算两个锚框或边界框列表中成对的交并比"""
- box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *
- (boxes[:, 3] - boxes[:, 1]))
- # boxes1,boxes2,areas1,areas2的形状:
- # boxes1:(boxes1的数量,4),
- # boxes2:(boxes2的数量,4),
- # areas1:(boxes1的数量,),
- # areas2:(boxes2的数量,)
- areas1 = box_area(boxes1)
- areas2 = box_area(boxes2)
- # inter_upperlefts,inter_lowerrights,inters的形状:
- # (boxes1的数量,boxes2的数量,2)
- inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
- inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
- inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
- # inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)
- inter_areas = inters[:, :, 0] * inters[:, :, 1]
- union_areas = areas1[:, None] + areas2 - inter_areas
- return inter_areas / union_areas
- # 将最接近的真实边界框分配给锚框
- # iou_threshold:阈值
- def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):
- # num_anchors=na num_gt_boxes=nb
- num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]
- # 位于第i行和第j列的元素x_ij是锚框i和真实边界框j的IoU
- jaccard = box_iou(anchors, ground_truth)
- # 对于每个锚框,分配的真实边界框的张量,初始值为-1
- anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long,
- device=device)
- # 找到每一行中最大交并比的ground_truth和anchors索引号
- max_ious, indices = torch.max(jaccard, dim=1)
- # 找到剩余交并比大于阈值的索引号
- anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1)
- box_j = indices[max_ious >= iou_threshold]
-
- anchors_bbox_map[anc_i] = box_j
- # 删去这些索引行和列
- col_discard = torch.full((num_anchors,), -1)
- row_discard = torch.full((num_gt_boxes,), -1)
- for _ in range(num_gt_boxes):
- max_idx = torch.argmax(jaccard)
- box_idx = (max_idx % num_gt_boxes).long()
- anc_idx = (max_idx / num_gt_boxes).long()
- anchors_bbox_map[anc_idx] = box_idx
- jaccard[:, box_idx] = col_discard
- jaccard[anc_idx, :] = row_discard
- return anchors_bbox_map
- #@save
- def offset_boxes(anchors, assigned_bb, eps=1e-6):
- """对锚框偏移量的转换"""
- c_anc = d2l.box_corner_to_center(anchors)
- c_assigned_bb = d2l.box_corner_to_center(assigned_bb)
- offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]
- offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])
- offset = torch.cat([offset_xy, offset_wh], axis=1)
- return offset
- #@save
- def multibox_target(anchors, labels):
- """使用真实边界框标记锚框"""
- batch_size, anchors = labels.shape[0], anchors.squeeze(0)
- batch_offset, batch_mask, batch_class_labels = [], [], []
- device, num_anchors = anchors.device, anchors.shape[0]
- for i in range(batch_size):
- label = labels[i, :, :]
- anchors_bbox_map = assign_anchor_to_bbox(
- label[:, 1:], anchors, device)
- bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(
- 1, 4)
- # 将类标签和分配的边界框坐标初始化为零
- class_labels = torch.zeros(num_anchors, dtype=torch.long,
- device=device)
- assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32,
- device=device)
- # 使用真实边界框来标记锚框的类别。
- # 如果一个锚框没有被分配,标记其为背景(值为零)
- indices_true = torch.nonzero(anchors_bbox_map >= 0)
- bb_idx = anchors_bbox_map[indices_true]
- class_labels[indices_true] = label[bb_idx, 0].long() + 1
- assigned_bb[indices_true] = label[bb_idx, 1:]
- # 偏移量转换
- offset = offset_boxes(anchors, assigned_bb) * bbox_mask
- batch_offset.append(offset.reshape(-1))
- batch_mask.append(bbox_mask.reshape(-1))
- batch_class_labels.append(class_labels)
- bbox_offset = torch.stack(batch_offset)
- bbox_mask = torch.stack(batch_mask)
- class_labels = torch.stack(batch_class_labels)
- return (bbox_offset, bbox_mask, class_labels)
-
- ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],
- [1, 0.55, 0.2, 0.9, 0.88]])
- anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
- [0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],
- [0.57, 0.3, 0.92, 0.9]])
首先锚框是在图像的每个像素点设立n+m-1个锚框,如果图像尺寸很大的话,会造成数据爆炸。这个小节介绍了在输入图像中均匀采样一小部分像素点。
用卷积层的输出即特征图来设立锚框,设立特征图的每个像素点为锚框中心,对任意图像的特征图(w,h)中的像素进行采样,以这些均匀采样的像素为中心。
- def display_anchors(fmap_w, fmap_h, s):
- d2l.set_figsize()
- # 前两个维度上的值不影响输出
- fmap = torch.zeros((10, 100, fmap_h, fmap_w))
- anchors = d2l.multibox_prior(fmap, sizes=s, ratios=[1, 2, 0.5])
- bbox_scale = torch.tensor((w, h, w, h))
- d2l.show_bboxes(d2l.plt.imshow(img).axes,
- anchors[0] * bbox_scale)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。