赞
踩
anaconda下新建一个环境
conda create -n yolo-sam python=3.8
激活新建的环境
conda activate yolo-sam
更换conda镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3
下载官方代码,并解压
git clone git@github.com:facebookresearch/segment-anything.git
https://github.com/ultralytics/yolov5.git
进入下载好的yolov5-6.1文件夹,打开cmd,激活环境,输入一下代码安装yolov5必须的库
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
进入下载好的segment-anything文件夹,打开cmd,激活安装好的环境,运行以下代码
pip install -e . -i https://mirrors.aliyun.com/pypi/simple/
安装所需python库
pip install opencv-python pycocotools matplotlib onnxruntime onnx flake8 isort black mypy -i https://mirrors.aliyun.com/pypi/simple/
import argparse
import os
import sys
import numpy as np
from pathlib import Path
import cv2
import json
import torch
from segment_anything import sam_model_registry, SamPredictor
from models.common import DetectMultiBackend
from utils.datasets import LoadImages
from utils.general import (LOGGER, check_img_size, check_requirements, increment_path, non_max_suppression, print_args, scale_coords, colorstr)
from utils.plots import Annotator, colors
from utils.torch_utils import select_device, time_sync
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
def show_box(box, img):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
cv2.rectangle(img, (int(x0), int(y0)), (int(x0+w), int(y0+h)), (0, 255, 0), 1)
def generate_json(masks, result, savePath):
if len(masks) == 0:
return
num = 0
shapes = []
for mask in masks:
mask = mask.cpu().numpy()[0]
# 过滤面积比较小的物体
if np.count_nonzero(mask == 1) >= 625:
# 创建labelme格式
tempData = {"label": "",
"points": [],
"group_id": None,
"shape_type": "polygon",
"flags": {}
}
tempData["label"] = str(result[num])
num = num + 1
# 找出物体轮廓
objImg = np.zeros((mask.shape[0], mask.shape[1]), np.uint8)
objImg[mask] = 255
contours, hierarchy = cv2.findContours(objImg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 找出轮廓最大的
max_area = 0
maxIndex = 0
for i in range(0, len(contours)):
area = cv2.contourArea(contours[i])
if area >= max_area:
max_area = area
maxIndex = i
# 将每个物体轮廓点数限制在一定范围内
if len(contours[maxIndex]) >= int(pow(np.count_nonzero(mask == 1), 0.5) / 2):
contours = list(contours[maxIndex])
contours = contours[::int(len(contours) / int(pow(np.count_nonzero(mask == 1), 0.5) / 2))]
else:
contours = list(contours[maxIndex])
# 向labelme数据格式中添加轮廓点
for point in contours:
tempData["points"].append([int(point[0][0]), int(point[0][1])])
# 添加物体标注信息
shapes.append(tempData)
jsonPath = savePath.replace(savePath.split(".")[-1], "json") # 需要生成的文件路径
print(jsonPath)
# 创建json文件
file_out = open(jsonPath, "w")
# 载入json文件
jsonData = {}
# 8. 写入,修改json文件
jsonData["version"] = "5.2.1"
jsonData["flags"] = {}
jsonData["shapes"] = shapes
jsonData["imagePath"] = savePath.split("\\")[-1]
jsonData["imageData"] = None
jsonData["imageHeight"] = mask.shape[0]
jsonData["imageWidth"] = mask.shape[1]
# 保存json文件
file_out.write(json.dumps(jsonData, indent=4)) # 保存文件
# 关闭json文件
file_out.close()
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
@torch.no_grad()
def run(weights_sam=ROOT / 'sam_vit_b_01ec64.pth', # model.pt path(s)
weights_yolo=ROOT / 'yolov5s.pt', # model.pt path(s)
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # 是否保存检测结果图像标志位
# 创建检测结果保存文件夹
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if False else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# 载入模型
device = select_device(device)
sam = sam_model_registry["vit_" + str(weights_sam).split("_")[2]](checkpoint=weights_sam)
sam.to(device="cuda")
model = DetectMultiBackend(weights_yolo, device=device, dnn=False, data=data)
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
imgsz = check_img_size(imgsz, s=stride) # 检查图像尺寸
# 载入数据
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# 运行检测
predictor = SamPredictor(sam)
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=False) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.float()
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# 预测
pred = model(im, augment=augment, visualize=False)
t3 = time_sync()
dt[1] += t3 - t2
# 非极大值抑制NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if False else im0 # for save_crop
annotator = Annotator(im0, line_width=3, example=str(names))
if len(det):
# 将目标框从模型检测尺度变换到图像原始尺度
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# 打印检测结果
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# 写结果
result = []
for *xyxy, conf, cls in reversed(det):
if save_img or view_img: # Add bbox to image
c = int(cls) # integer class
result.append(c)
label = None if False else (names[c] if False else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
image = im0s.copy()
predictor.set_image(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
input_boxes = det[:, :4].clone().detach() # 假设这是目标检测的预测结果
transformed_boxes = predictor.transform.apply_boxes_torch(input_boxes, image.shape[:2])
masks, _, _ = predictor.predict_torch(point_coords=None, point_labels=None, boxes=transformed_boxes, multimask_output=False)
generate_json(masks, result, save_path)
for mask in masks:
mask = mask.cpu().numpy()
color = np.concatenate([np.random.random(3) * 255], axis=0)
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
image = cv2.addWeighted(image, 1, np.array(mask_image, dtype=np.uint8), 0.4, 0)
for box in input_boxes:
show_box(box.cpu().numpy(), image)
if view_img:
cv2.imshow("mask", image)
cv2.waitKey(0)
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, image)
# Print time (inference-only)
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if False else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights-sam', nargs='+', type=str, default=ROOT / 'weights/sam_vit_h_4b8939.pth', help='model path(s)')
parser.add_argument('--weights-yolo', nargs='+', type=str, default=ROOT / 'weights/airblow4s.pt', help='model path(s)')
parser.add_argument('--source', type=str, default="D:\\20231126", help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--data', type=str, default=ROOT / 'data/airblow_4.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.1, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(FILE.stem, opt)
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。