当前位置:   article > 正文

Android的log机制,安卓开发项目经历_android log机制

android log机制

public static native int println_native(int bufID,

int priority, String tag, String msg);

这两个方法是在frameworks/base/core/jni/android_util_log.cpp中实现的。如何实现JNI的,在这里不做表述。不过最终这两个方法分别转入了下列两个c/c++函数的调用。

static jboolean android_util_Log_isLoggable(JNIEnv* env, jobject clazz, jstring tag, jint level)

static jint android_util_Log_println_native(JNIEnv* env, jobject clazz,

jint bufID, jint priority, jstring tagObj, jstring msgObj)

isLoggable()的实现

isLoggable的实现是比较(来自参数)与当前property里设定的“log.tag.”(来自参数)的值,大于或等于都是可记录的。程序实现片断如下:

// LOG_NAMESPACE : “log.tag.”

// chars: convert from param

strncpy(key, LOG_NAMESPACE, sizeof(LOG_NAMESPACE)-1);

strcpy(key + sizeof(LOG_NAMESPACE) - 1, chars);

len = property_get(key, buf, “”);

int logLevel = toLevel(buf);

return (logLevel >= 0 && level >= logLevel) ? true : false;

println_native()的实现

函数android_util_Log_println_native() [文件android_util.Log.cpp中]调用了__android_log_buf_write()[文件system/core/liblog/logd_write.c中]。__android_log_buf_write()组织了参数,又调用了write_to_log这个函数指针。

write_to_log这个函数指针是实现的关键。

看write_to_log的定义:

static int __write_to_log_init(log_id_t, struct iovec *vec, size_t nr);

static int (*write_to_log)(log_id_t, struct iovec *vec, size_t nr) = __write_to_log_init;

write_to_log初始是指向__write_to_log_init()这个函数的。所以第一次执行write_to_log的时候是执行了__write_to_log_init()。而如果write_to_log不是第一次被执行,它已经在__write_to_log_init()里被修改指向了__write_to_log_kernel()。

先看__write_to_log_init()的实现:

static int __write_to_log_init(log_id_t log_id, struct iovec *vec, size_t nr)

{

#ifdef HAVE_PTHREADS

pthread_mutex_lock(&log_init_lock);

#endif

if (write_to_log == __write_to_log_init) {

log_fds[LOG_ID_MAIN] = log_open("/dev/"LOGGER_LOG_MAIN, O_WRONLY);

log_fds[LOG_ID_RADIO] = log_open("/dev/"LOGGER_LOG_RADIO, O_WRONLY);

log_fds[LOG_ID_EVENTS] = log_open("/dev/"LOGGER_LOG_EVENTS, O_WRONLY);

log_fds[LOG_ID_SYSTEM] = log_open("/dev/"LOGGER_LOG_SYSTEM, O_WRONLY);

write_to_log = __write_to_log_kernel;

if (log_fds[LOG_ID_MAIN] < 0 || log_fds[LOG_ID_RADIO] < 0 ||

log_fds[LOG_ID_EVENTS] < 0) {

log_close(log_fds[LOG_ID_MAIN]);

log_close(log_fds[LOG_ID_RADIO]);

log_close(log_fds[LOG_ID_EVENTS]);

log_fds[LOG_ID_MAIN] = -1;

log_fds[LOG_ID_RADIO] = -1;

log_fds[LOG_ID_EVENTS] = -1;

write_to_log = __write_to_log_null;

}

if (log_fds[LOG_ID_SYSTEM] < 0) {

log_fds[LOG_ID_SYSTEM] = log_fds[LOG_ID_MAIN];

}

}

#ifdef HAVE_PTHREADS

pthread_mutex_unlock(&log_init_lock);

#endif

return write_to_log(log_id, vec, nr);

}

基本上就是做互斥访问的保护,然后如果是第一次调用(write_to_log还指向__write_to_log_init()),就打开相应的设备文件,获取描述符,并把write_to_log指向__write_to_log_kernel()。再在__write_to_log_kernel()中具体执行写入文件操作。

看__write_to_kernel()的实现,基本就是写操作:

static int __write_to_log_kernel(log_id_t log_id, struct iovec *vec, size_t nr)

{

ssize_t ret;

int log_fd;

if (/*(int)log_id >= 0 &&*/ (int)log_id < (int)LOG_ID_MAX) {

log_fd = log_fds[(int)log_id];

} else {

return EBADF;

}

do {

ret = log_writev(log_fd, vec, nr);

} while (ret < 0 && errno == EINTR);

return ret;

}

总结一下,println_native()的操作,就是打开设备文件(如果还没打开),然后写入数据。而具体怎么写入的,要看Log的设备驱动Logger的实现。

(4)LOG设备驱动Logger

Log的驱动是在kernel/drivers/staging/android/Logger.c中实现的。

一、初始化

看一个LINUX驱动,先看它如何初始化的。

static int __init init_log(struct logger_log *log)

{

int ret;

ret = misc_register(&log->misc);

if (unlikely(ret)) {

printk(KERN_ERR "logger: failed to register misc "

“device for log ‘%s’!\n”, log->misc.name);

return ret;

}

printk(KERN_INFO “logger: created %luK log ‘%s’\n”,

(unsigned long) log->size >> 10, log->misc.name);

return 0;

}

static int __init logger_init(void)

{

int ret;

ret = init_log(&log_main);

if (unlikely(ret))

goto out;

ret = init_log(&log_events);

if (unlikely(ret))

goto out;

ret = init_log(&log_radio);

if (unlikely(ret))

goto out;

ret = init_log(&log_system);

if (unlikely(ret))

goto out;

out:

return ret;

}

device_initcall(logger_init);

整个Logger驱动的入口点就是Logger_init(),它用init_log(struct logger_log *log)初始化了log_main, log_events, log_radio和log_system四个logger_log类型的结构,而这四个结构变量分别记录着log的四个存储体。Logger从这四个变量实现了同种设备的四个驱动,而log的驱动是MISC类型的驱动,通过misc_register()向系统注册。四次注册之后,它们对应的MINOR ID将是不同的,Looger也是通过minor来区分是哪一个驱动的。

static struct logger_log *get_log_from_minor(int minor)

{

if (log_main.misc.minor == minor)

return &log_main;

if (log_events.misc.minor == minor)

return &log_events;

if (log_radio.misc.minor == minor)

return &log_radio;

if (log_system.misc.minor == minor)

return &log_system;

return NULL;

}

本文将以log_main来讲解Logger驱动的实现。

二、关键数据结构

上节中,提到了log_main这个结构体变量,现在来看它的定义。

Log_main里保存了Logger操作必须的变量。buffer指向的真是一个静态数组,用来存放用来读写的数据,Logger用它组成了一个逻辑上的循环队列,写者可以往w_off指向的地方写东西,而一旦有内容,会通知等待队列wq里的读者们来读取内容。因为buffer实现的是循环队列,所以buffer的大小size经常用来做除高位的运算,一定要是一个2次幂的数字。mutex用来保护log_main这个关键资源的。Logger是MISC类型的驱动,它保留着一个miscdevice类型的变量misc。misc里面也有最为关键的file_operations结构,这正是应用程序通过文件操作,与驱动打交道的入口。

三、Logger实现的功能

从上面log_main的类型定义就能看出,Logger实现了什么。一句话概括Logger就是实现了读写者,并实现同步操作。不过,Logger的读写者有些特殊,写者写操作不会被阻塞,也不会写满溢出,也就是写时只要有内容可以不停的写,超出Buffer就覆盖旧的[与应用程序具体的写操作结合来看];读者因为要读的内容为空就会被阻塞挂起,而一旦有内容,所有被挂起的读者都会被唤醒[与应用程序具体的读操作结合来看]。

下面看具体实现的时候,就分别从读者和写者的角度去看。

3.1. 写者的实现

看二小节图中的关键结构logger_fops: file_operations,写者的关键实现就看open、release和write这几个函数的实现了,它们被分别赋值给了logger_open() / logger_release() / logger_aio_write()。

logger_open()为写者做的工作就是,通过minor id获得logger_log的实例,然后赋值给函数参数中传递进来的file的private_data中。

logger_release()不需要为写者做的什么工作。

logger_poll()因为写不需要被阻塞。所以这里检测到是因为非因为读而打开的文件(!(file->f_mode &FMODE_READ))时,就直接返回POLLOUT | POLLWRNORM。无论怎样都可写。

logger_aio_write()是写数据(也就是log信息)的关键。这里是通过异步IO的方法,应用程序通过write()/writev()和aio_write()时都能调用到这个方法。

记录log信息时,写log用的接口是writev(),写的是vec形式的数据,这边写的过程中来的当然也是vec数据了,另外,写具体之间,还写入了类型为logger_entry的数据,来记录时间等信息。写数据到具体buffer时因为存储的位置可能不是连续的,而写在buffer的结尾和开头位置,所以要做判断,并可能要有两次写的buffer的动作。参数里的数据来自用户空间,不能在内核空间直接使用,要用copy_from_user()。写完之后,用wake_up_interruptible(&log->wq)唤醒所有在挂起等待的读者。

3.2. 读者的实现

看二小节图中的关键结构logger_fops: file_operations,写者的关键实现就看open、release和read这几个函数的实现了,它们被分别赋值给了logger_open() / logger_release() / logger_read()。

logger_open() 为读者做的工作就是,通过minor id获得logger_log的实例,然后动态申请一个logger_reader类型的读者,并把它加入到logger_log的读者列表readers的结尾,再赋值给函数参数中传递进来的file的private_data中。

logger_release() 与logger_open()对应,将这个读者从读者列表logger_log.readers中移除,并释放掉这个动态申请的实例。

logger_poll()因为应用读之前会调用poll()/select()查看是否可以写。所以这里会用poll_wait()把参数中的poll_table加入到logger_log.wq中,并且如果有内容可读,才设置可读标志|= POLLIN |POLLRDNORM。

logger_read() 是读数据(也就是log信息)的关键。

读数据之前,要先保证有数据,否则该读者就要被挂起在logger_log的等待队列wq上。从具体buffer读数据到时因为存储的位置可能不是连续的,存储在buffer的结尾和开头位置,所以要做判断,并可能要有两次读去buffer的动作。数据来自内核空间,要通过用户空间的参数里传递出去,需要copy_to_user()。

3.3 循环队列的实现

这个是数据结构里最经典的案例了,这里不再具体解释如何实现,只是列出重要结构,只是希望读者还记得数据结构里逻辑结构和物理结构的说法。

队列大小:log_main.size

写头:log_main.w_off

读头:logger_reader.r_off

队列为空判断:log_main.w_off == logger_reader.r_off

队列为满判断:不需要

3.4 ioctl的实现

Logger提供给应用程序通过ioctl()来获取信息或控制LOGbuffer的功能。Logger是把logger_ioctl通过file_operations注册到文件系统中来实现这一功能的。Logger_ioctl()提供了下列ioctl控制命令:LOGGER_GET_LOG_BUF_SIZE / LOGGER_GET_LOG_LEN/ LOGGER_GET_NEXT_ENTRY_LEN / LOGGER_FLUSH_LOG。实现很简单:

LOGGER_GET_LOG_BUF_SIZE获取Buffer的大小,直接返回logger_log.size即可;

LOGGER_GET_LOG_LEN只对读有效,获取当前LOG的大小,存储连续的话就是log->w_off -reader->r_off,否则就是(log->size -reader->r_off) + log->w_off;

LOGGER_GET_NEXT_ENTRY_LEN获取Entry的长度,只对读有效。

LOGGER_FLUSH_LOG只对写打开有效。所谓FLUSH LOG,直接重置每个reader的r_off,并设置新reader要访问用的head即可。

从前文知道,LOG被写入到了驱动的节点,那如何获取这些LOG信息并呈现出来的呢?ANDROID里是有个叫LogCat的应用程序被用来获取LOG信息。LogCat不仅从设备节点处获取LOG,并且还提供了很多选项供用户来过滤、控制输出格式等。本文只讲解如何获取LOG部分,相关的LogCat的使用方式,可参考Android的Logcat命令详解。

LogCat是在文件system/core/logcat/logcat.cpp中实现的。

(5)获取LOG的应用程序LogCat

从Logger设备驱动的实现知道,Log的读取是阻塞的操作,亦即,有数据可用,读出数据;否则,读操作会被BLOCK,相应的读进程也会被挂起等待。下面看应用程序LogCat中如何实现读的,这可能需要不断回头与写操作和驱动实现结合来看。

看具体实现之前,先看一个logcat中定义的重要的结构体log_device_t。其中的重要的成员在后面用到的时候再具体解释。

一、打开设备节点

Android的Logcat命令详解的命令参数-b 知道,logcat是可以通过参数来指定对哪个buffer(main/radio/event)进行操作的。Logcat的b参数解析的地方,是通过传递进来的参数(main/radio/event)来创建了一个上面的结构变量,而这些结构通过log_device_t.next链接起来。

if (devices) {

dev = devices;

while (dev->next) {

dev = dev->next;

}

dev->next = new log_device_t(buf, binary, optarg[0]);

} else {

devices = new log_device_t(buf, binary, optarg[0]);

}

而创建实例的时候的参数被保留了下来,用于后续操作。

是由LOG_FILE_DIR和optarg(-b参数)组合在一起的(为:“/dev/log/main”,“/dev/log/event”或“/dev/log/radio”),保留在device: char*;

保留在binary: bool;

<optarg[0]>是-b参数的第一个字符,保存在label: char中。

好了,下面就有了打开设备节点时的参数:

dev->fd = open(dev->device, mode);

dev->device根据-b的参数可能为“/dev/log/main”,“/dev/log/event”或“/dev/log/radio”;

mode缺省时为O_RDONLY,读取。只要在运行logcat时,用了-c参数清除log时才以O_WRONLY打开。

而打开文件的文件操作符保存在log_device_t的fd域中,用于后续的操作。

获取Log的操作都是在readLogLines(log_device_t* devices)中实现的。

因为logcat可能会同时操作多个Buffer,而read()会阻塞读取进程,对其他Buffer的读取就不能进行,所以这里用select()来判断可读取的Buffer。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则近万的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Android移动开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Android)

最后

感觉现在好多人都在说什么安卓快凉了,工作越来越难找了。又是说什么程序员中年危机啥的,为啥我这年近30的老农根本没有这种感觉,反倒觉得那些贩卖焦虑的都是瞎j8扯谈。当然,职业危机意识确实是要有的,但根本没到那种草木皆兵的地步好吗?

Android凉了都是弱者的借口和说辞。虽然 Android 没有前几年火热了,已经过去了会四大组件就能找到高薪职位的时代了。这只能说明 Android 中级以下的岗位饱和了,现在高级工程师还是比较缺少的,很多高级职位给的薪资真的特别高(钱多也不一定能找到合适的),所以努力让自己成为高级工程师才是最重要的。

所以,最后这里放上我耗时两个月,将自己8年Android开发的知识笔记整理成的Android开发者必知必会系统学习资料笔记,上述知识点在笔记中都有详细的解读,里面还包含了腾讯、字节跳动、阿里、百度2019-2021面试真题解析,并且把每个技术点整理成了视频和PDF(知识脉络 + 诸多细节)。

以上全套学习笔记面试宝典,吃透一半保你可以吊打面试官,只有自己真正强大了,有核心竞争力,你才有拒绝offer的权力,所以,奋斗吧!骚年们!千里之行,始于足下。种下一颗树最好的时间是十年前,其次,就是现在。

最后,赠与大家一句诗,共勉!

不驰于空想,不骛于虚声。不忘初心,方得始终。

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

13/H4lCoPEF.jpg" />

最后

感觉现在好多人都在说什么安卓快凉了,工作越来越难找了。又是说什么程序员中年危机啥的,为啥我这年近30的老农根本没有这种感觉,反倒觉得那些贩卖焦虑的都是瞎j8扯谈。当然,职业危机意识确实是要有的,但根本没到那种草木皆兵的地步好吗?

Android凉了都是弱者的借口和说辞。虽然 Android 没有前几年火热了,已经过去了会四大组件就能找到高薪职位的时代了。这只能说明 Android 中级以下的岗位饱和了,现在高级工程师还是比较缺少的,很多高级职位给的薪资真的特别高(钱多也不一定能找到合适的),所以努力让自己成为高级工程师才是最重要的。

所以,最后这里放上我耗时两个月,将自己8年Android开发的知识笔记整理成的Android开发者必知必会系统学习资料笔记,上述知识点在笔记中都有详细的解读,里面还包含了腾讯、字节跳动、阿里、百度2019-2021面试真题解析,并且把每个技术点整理成了视频和PDF(知识脉络 + 诸多细节)。

[外链图片转存中…(img-sMDJirn5-1712434280296)]

以上全套学习笔记面试宝典,吃透一半保你可以吊打面试官,只有自己真正强大了,有核心竞争力,你才有拒绝offer的权力,所以,奋斗吧!骚年们!千里之行,始于足下。种下一颗树最好的时间是十年前,其次,就是现在。

最后,赠与大家一句诗,共勉!

不驰于空想,不骛于虚声。不忘初心,方得始终。

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/684715
推荐阅读
相关标签
  

闽ICP备14008679号