赞
踩
课程资源:5、帮各位写好了十多个分类模型,直接运行即可【小学生都会的Pytorch】_哔哩哔哩_bilibili
目录
数据集在data文件夹下
运行CreateDataset.py来生成train.txt和test.txt的数据集文件。
进行模型的训练,从torchvision中的models模块import了alexnet, vgg, resnet的多个网络模型,使用时直接取消注释掉响应的代码即可,比如我现在训练的是vgg11的网络。
- # 不使用预训练参数
- # model = alexnet(pretrained=False, num_classes=5).to(device) # 29.3%
-
- ''' VGG系列 '''
- model = vgg11(weights=False, num_classes=5).to(device) # 23.1%
- # model = vgg13(weights=False, num_classes=5).to(device) # 30.0%
- # model = vgg16(weights=False, num_classes=5).to(device)
-
-
- ''' ResNet系列 '''
- # model = resnet18(weights=False, num_classes=5).to(device) # 43.6%
- # model = resnet34(weights=False, num_classes=5).to(device)
- # model = resnet50(weights= False, num_classes=5).to(device)
- #model = resnet101(weights=False, num_classes=5).to(device) # 26.2%
- # model = resnet152(weights=False, num_classes=5).to(device)
同时需要注意的是, vgg11中的weights参数设置为false,我们进入到vgg的定义页发现weights即为是否使用预训练参数,设置为FALSE说明我们不使用预训练参数,因为vgg网络的预训练类别数为1000,而我们自己的数据集没有那么多类,因此不使用预训练。
把最后一行中产生的pth的文件名称改成对应网络的名称,如model_vgg11.pth。
- # 保存训练好的模型
- torch.save(model.state_dict(), "model_vgg11.pth")
- print("Saved PyTorch Model Success!")
我在运行过程中遇到了“torch.cuda.OutOfMemoryError”的问题,显卡的显存不够,在服务器中使用查看显卡占用情况命令:
nvidia -smi
可以看到我一直用的是默认显卡0,使用情况已经到了100%,但是显卡1使用了67%,还用显存使用空间,所以使用以下代码来把显卡0换成显卡1.
- # 设置显卡型号为1
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '1'
- '''
- 生成训练集和测试集,保存在txt文件中
- '''
- ##相当于模型的输入。后面做数据加载器dataload的时候从里面读他的数据
- import os
- import random#打乱数据用的
-
- # 百分之60用来当训练集
- train_ratio = 0.6
-
- # 用来当测试集
- test_ratio = 1-train_ratio
-
- rootdata = r"data" #数据的根目录
-
- train_list, test_list = [],[]#读取里面每一类的类别
- data_list = []
-
- #生产train.txt和test.txt
- class_flag = -1
- for a,b,c in os.walk(rootdata):
- print(a)
- for i in range(len(c)):
- data_list.append(os.path.join(a,c[i]))
-
- for i in range(0,int(len(c)*train_ratio)):
- train_data = os.path.join(a, c[i])+'\t'+str(class_flag)+'\n'
- train_list.append(train_data)
-
- for i in range(int(len(c) * train_ratio),len(c)):
- test_data = os.path.join(a, c[i]) + '\t' + str(class_flag)+'\n'
- test_list.append(test_data)
-
- class_flag += 1
-
- print(train_list)
- random.shuffle(train_list)#打乱次序
- random.shuffle(test_list)
-
- with open('train.txt','w',encoding='UTF-8') as f:
- for train_img in train_list:
- f.write(str(train_img))
-
- with open('test.txt','w',encoding='UTF-8') as f:
- for test_img in test_list:
- f.write(test_img)
- '''
- 加载pytorch自带的模型,从头训练自己的数据
- '''
- import time
- import torch
- from torch import nn
- from torch.utils.data import DataLoader
- from utils import LoadData
-
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '1'
-
-
- from torchvision.models import alexnet #最简单的模型
- from torchvision.models import vgg11, vgg13, vgg16, vgg19 # VGG系列
- from torchvision.models import resnet18, resnet34,resnet50, resnet101, resnet152 # ResNet系列
- from torchvision.models import inception_v3 # Inception 系列
-
- # 定义训练函数,需要
- def train(dataloader, model, loss_fn, optimizer):
- size = len(dataloader.dataset)
- # 从数据加载器中读取batch(一次读取多少张,即批次数),X(图片数据),y(图片真实标签)。
- for batch, (X, y) in enumerate(dataloader):
- # 将数据存到显卡
- X, y = X.cuda(), y.cuda()
-
- # 得到预测的结果pred
- pred = model(X)
-
- # 计算预测的误差
- # print(pred,y)
- loss = loss_fn(pred, y)
-
- # 反向传播,更新模型参数
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- # 每训练10次,输出一次当前信息
- if batch % 10 == 0:
- loss, current = loss.item(), batch * len(X)
- print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
-
-
- def test(dataloader, model):
- size = len(dataloader.dataset)
- # 将模型转为验证模式
- model.eval()
- # 初始化test_loss 和 correct, 用来统计每次的误差
- test_loss, correct = 0, 0
- # 测试时模型参数不用更新,所以no_gard()
- # 非训练, 推理期用到
- with torch.no_grad():
- # 加载数据加载器,得到里面的X(图片数据)和y(真实标签)
- for X, y in dataloader:
- # 将数据转到GPU
- X, y = X.cuda(), y.cuda()
- # 将图片传入到模型当中就,得到预测的值pred
- pred = model(X)
- # 计算预测值pred和真实值y的差距
- test_loss += loss_fn(pred, y).item()
- # 统计预测正确的个数
- correct += (pred.argmax(1) == y).type(torch.float).sum().item()
- test_loss /= size
- correct /= size
- print(f"correct = {correct}, Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
-
-
-
-
- if __name__=='__main__':
- batch_size = 8
-
- # # 给训练集和测试集分别创建一个数据集加载器
- train_data = LoadData("train.txt", True)
- valid_data = LoadData("test.txt", False)
-
-
- train_dataloader = DataLoader(dataset=train_data, num_workers=4, pin_memory=True, batch_size=batch_size, shuffle=True)
- test_dataloader = DataLoader(dataset=valid_data, num_workers=4, pin_memory=True, batch_size=batch_size)
-
- # 如果显卡可用,则用显卡进行训练
- device = "cuda" if torch.cuda.is_available() else "cpu"
- print(f"Using {device} device")
-
-
- '''
- 随着模型的加深,需要训练的模型参数量增加,相同的训练次数下模型训练准确率起来得更慢
- '''
-
- # 不使用预训练参数
- # model = alexnet(pretrained=False, num_classes=5).to(device) # 29.3%
-
- ''' VGG系列 '''
- model = vgg11(weights=False, num_classes=5).to(device) # 23.1%
- # model = vgg13(weights=False, num_classes=5).to(device) # 30.0%
- # model = vgg16(weights=False, num_classes=5).to(device)
-
-
- ''' ResNet系列 '''
- # model = resnet18(weights=False, num_classes=5).to(device) # 43.6%
- # model = resnet34(weights=False, num_classes=5).to(device)
- # model = resnet50(weights= False, num_classes=5).to(device)
- #model = resnet101(weights=False, num_classes=5).to(device) # 26.2%
- # model = resnet152(weights=False, num_classes=5).to(device)
-
-
-
-
- print(model)
- # 定义损失函数,计算相差多少,交叉熵,
- loss_fn = nn.CrossEntropyLoss()
-
- # 定义优化器,用来训练时候优化模型参数,随机梯度下降法
- optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) # 初始学习率
-
-
- # 一共训练1次
- epochs = 1
- for t in range(epochs):
- print(f"Epoch {t+1}\n-------------------------------")
- time_start = time.time()
- train(train_dataloader, model, loss_fn, optimizer)
- time_end = time.time()
- print(f"train time: {(time_end-time_start)}")
- test(test_dataloader, model)
- print("Done!")
-
- # 保存训练好的模型
- torch.save(model.state_dict(), "model_vgg11.pth")
- print("Saved PyTorch Model Success!")
vgg11的运行结果:,可以看到最后的准确率是24.8%,因为没有用预训练模型,所以准确率很低。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。