当前位置:   article > 正文

聚类分析 | MATLAB实现k-Means(k均值聚类)分析_kmeans空间位置 matlab

kmeans空间位置 matlab

聚类分析 | MATLAB实现k-Means(k均值聚类)分析

k-均值聚类简介

k均值聚类是一种分区方法。该函数kmeans将数据划分为k 个互斥的簇,并返回它为每个观察分配的簇的索引。 kmeans将数据中的每个观察值视为在空间中具有位置的对象。该函数找到一个分区,其中每个集群中的对象尽可能彼此靠近,并尽可能远离其他集群中的对象。您可以根据数据的属性选择要使用 的距离度量kmeans。像许多聚类方法一样,k-means 聚类要求您在聚类之前指定聚类数k。
与层次聚类不同,k均值聚类对实际观察进行操作,而不是对数据中每对观察之间的差异进行操作。此外,k- means 聚类创建单个级别的集群,而不是多级的集群层次结构。因此,对于大量数据, k- means 聚类通常比层次聚类更合适。
k- means 分区中的每个集群由成员对象和质心(或中心)组成。在每个集群中,kmeans最小化质心与集群所有成员对象之间的距离总和。 kmeans对于支持的距离度量,以不同的方式计算质心簇。

  • 可以使用可用于的名称-值对参数来控制最小化的细节 kmeans;例如,可以指定聚类质心的初始值和算法的最大迭代次数。默认情况下,kmeans使用k -means++ 算法初始化聚类质心,并使用平方欧几里德距离度量来确定距离。
  • 执行k均值聚类时,一般步骤:
  • 比较ķ -means集群解决方案的不同值ķ确定集群,为数据的最佳数量。
  • 通过检查轮廓图和轮廓值来评估聚类解决方案。还可以使用该evalclusters函数,根据间隙值、轮廓值、Davies-Bo
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/719307
推荐阅读
相关标签
  

闽ICP备14008679号