赞
踩
VOC数据格式,会直接把每张图片标注的标签信息保存到一个XML文件中。
xml中的关键信息说明:
YOLO数据格式,会直接把每张图片标注的标签信息保存到一个txt文件中。
0 0.521000 0.235075 0.362000 0.450249
0 0.213000 0.645522 0.418000 0.519900
0 0.794000 0.665423 0.376000 0.470149
txt中信息说明:
import os import xml.etree.ElementTree as ET from xml.dom.minidom import Document import cv2 ''' import xml xml.dom.minidom.Document().writexml() def writexml(self, writer: Any, indent: str = "", addindent: str = "", newl: str = "", encoding: Any = None) -> None ''' class YOLO2VOCConvert: def __init__(self, txts_path, xmls_path, imgs_path): self.txts_path = txts_path # 标注的yolo格式标签文件路径 self.xmls_path = xmls_path # 转化为voc格式标签之后保存路径 self.imgs_path = imgs_path # 读取读片的路径个图片名字,存储到xml标签文件中 self.classes = ["shirt", "non_shirt", "western_style_clothes", "coat", "down_filled_coat", "cotton", "sweater", "silk_scarf", "tie", "bow_tie"] # 从所有的txt文件中提取出所有的类别, yolo格式的标签格式类别为数字 0,1,... # writer为True时,把提取的类别保存到'./Annotations/classes.txt'文件中 def search_all_classes(self, writer=False): # 读取每一个txt标签文件,取出每个目标的标注信息 all_names = set() txts = os.listdir(self.txts_path) # 使用列表生成式过滤出只有后缀名为txt的标签文件 txts = [txt for txt in txts if txt.split('.')[-1] == 'txt'] print(len(txts), txts) # 11 ['0002030.txt', '0002031.txt', ... '0002039.txt', '0002040.txt'] for txt in txts: txt_file = os.path.join(self.txts_path, txt) with open(txt_file, 'r') as f: objects = f.readlines() for object in objects: object = object.strip().split(' ') print(object) # ['2', '0.506667', '0.553333', '0.490667', '0.658667'] all_names.add(int(object[0])) # print(objects) # ['2 0.506667 0.553333 0.490667 0.658667\n', '0 0.496000 0.285333 0.133333 0.096000\n', '8 0.501333 0.412000 0.074667 0.237333\n'] print("所有的类别标签:", all_names, "共标注数据集:%d张" % len(txts)) # 把从xmls标签文件中提取的类别写入到'./Annotations/classes.txt'文件中 # if writer: # with open('./Annotations/classes.txt', 'w') as f: # for label in all_names: # f.write(label + '\n') return list(all_names) def yolo2voc(self): # 创建一个保存xml标签文件的文件夹 if not os.path.exists(self.xmls_path): os.mkdir(self.xmls_path) # # 读取每张图片,获取图片的尺寸信息(shape) # imgs = os.listdir(self.imgs_path) # for img_name in imgs: # img = cv2.imread(os.path.join(self.imgs_path, img_name)) # height, width, depth = img.shape # # print(height, width, depth) # h 就是多少行(对应图片的高度), w就是多少列(对应图片的宽度) # # # 读取每一个txt标签文件,取出每个目标的标注信息 # all_names = set() # txts = os.listdir(self.txts_path) # # 使用列表生成式过滤出只有后缀名为txt的标签文件 # txts = [txt for txt in txts if txt.split('.')[-1] == 'txt'] # print(len(txts), txts) # # 11 ['0002030.txt', '0002031.txt', ... '0002039.txt', '0002040.txt'] # for txt_name in txts: # txt_file = os.path.join(self.txts_path, txt_name) # with open(txt_file, 'r') as f: # objects = f.readlines() # for object in objects: # object = object.strip().split(' ') # print(object) # ['2', '0.506667', '0.553333', '0.490667', '0.658667'] # 把上面的两个循环改写成为一个循环: imgs = os.listdir(self.imgs_path) txts = os.listdir(self.txts_path) txts = [txt for txt in txts if not txt.split('.')[0] == "classes"] # 过滤掉classes.txt文件 print(txts) # 注意,这里保持图片的数量和标签txt文件数量相等,且要保证名字是一一对应的 (后面改进,通过判断txt文件名是否在imgs中即可) if len(imgs) == len(txts): # 注意:./Annotation_txt 不要把classes.txt文件放进去 map_imgs_txts = [(img, txt) for img, txt in zip(imgs, txts)] txts = [txt for txt in txts if txt.split('.')[-1] == 'txt'] print(len(txts), txts) for img_name, txt_name in map_imgs_txts: # 读取图片的尺度信息 print("读取图片:", img_name) img = cv2.imread(os.path.join(self.imgs_path, img_name)) height_img, width_img, depth_img = img.shape print(height_img, width_img, depth_img) # h 就是多少行(对应图片的高度), w就是多少列(对应图片的宽度) # 获取标注文件txt中的标注信息 all_objects = [] txt_file = os.path.join(self.txts_path, txt_name) with open(txt_file, 'r') as f: objects = f.readlines() for object in objects: object = object.strip().split(' ') all_objects.append(object) print(object) # ['2', '0.506667', '0.553333', '0.490667', '0.658667'] # 创建xml标签文件中的标签 xmlBuilder = Document() # 创建annotation标签,也是根标签 annotation = xmlBuilder.createElement("annotation") # 给标签annotation添加一个子标签 xmlBuilder.appendChild(annotation) # 创建子标签folder folder = xmlBuilder.createElement("folder") # 给子标签folder中存入内容,folder标签中的内容是存放图片的文件夹,例如:JPEGImages folderContent = xmlBuilder.createTextNode(self.imgs_path.split('/')[-1]) # 标签内存 folder.appendChild(folderContent) # 把内容存入标签 annotation.appendChild(folder) # 把存好内容的folder标签放到 annotation根标签下 # 创建子标签filename filename = xmlBuilder.createElement("filename") # 给子标签filename中存入内容,filename标签中的内容是图片的名字,例如:000250.jpg filenameContent = xmlBuilder.createTextNode(txt_name.split('.')[0] + '.jpg') # 标签内容 filename.appendChild(filenameContent) annotation.appendChild(filename) # 把图片的shape存入xml标签中 size = xmlBuilder.createElement("size") # 给size标签创建子标签width width = xmlBuilder.createElement("width") # size子标签width widthContent = xmlBuilder.createTextNode(str(width_img)) width.appendChild(widthContent) size.appendChild(width) # 把width添加为size的子标签 # 给size标签创建子标签height height = xmlBuilder.createElement("height") # size子标签height heightContent = xmlBuilder.createTextNode(str(height_img)) # xml标签中存入的内容都是字符串 height.appendChild(heightContent) size.appendChild(height) # 把width添加为size的子标签 # 给size标签创建子标签depth depth = xmlBuilder.createElement("depth") # size子标签width depthContent = xmlBuilder.createTextNode(str(depth_img)) depth.appendChild(depthContent) size.appendChild(depth) # 把width添加为size的子标签 annotation.appendChild(size) # 把size添加为annotation的子标签 # 每一个object中存储的都是['2', '0.506667', '0.553333', '0.490667', '0.658667']一个标注目标 for object_info in all_objects: # 开始创建标注目标的label信息的标签 object = xmlBuilder.createElement("object") # 创建object标签 # 创建label类别标签 # 创建name标签 imgName = xmlBuilder.createElement("name") # 创建name标签 imgNameContent = xmlBuilder.createTextNode(self.classes[int(object_info[0])]) imgName.appendChild(imgNameContent) object.appendChild(imgName) # 把name添加为object的子标签 # 创建pose标签 pose = xmlBuilder.createElement("pose") poseContent = xmlBuilder.createTextNode("Unspecified") pose.appendChild(poseContent) object.appendChild(pose) # 把pose添加为object的标签 # 创建truncated标签 truncated = xmlBuilder.createElement("truncated") truncatedContent = xmlBuilder.createTextNode("0") truncated.appendChild(truncatedContent) object.appendChild(truncated) # 创建difficult标签 difficult = xmlBuilder.createElement("difficult") difficultContent = xmlBuilder.createTextNode("0") difficult.appendChild(difficultContent) object.appendChild(difficult) # 先转换一下坐标 # (objx_center, objy_center, obj_width, obj_height)->(xmin,ymin, xmax,ymax) x_center = float(object_info[1])*width_img + 1 y_center = float(object_info[2])*height_img + 1 xminVal = int(x_center - 0.5*float(object_info[3])*width_img) # object_info列表中的元素都是字符串类型 yminVal = int(y_center - 0.5*float(object_info[4])*height_img) xmaxVal = int(x_center + 0.5*float(object_info[3])*width_img) ymaxVal = int(y_center + 0.5*float(object_info[4])*height_img) # 创建bndbox标签(三级标签) bndbox = xmlBuilder.createElement("bndbox") # 在bndbox标签下再创建四个子标签(xmin,ymin, xmax,ymax) 即标注物体的坐标和宽高信息 # 在voc格式中,标注信息:左上角坐标(xmin, ymin) (xmax, ymax)右下角坐标 # 1、创建xmin标签 xmin = xmlBuilder.createElement("xmin") # 创建xmin标签(四级标签) xminContent = xmlBuilder.createTextNode(str(xminVal)) xmin.appendChild(xminContent) bndbox.appendChild(xmin) # 2、创建ymin标签 ymin = xmlBuilder.createElement("ymin") # 创建ymin标签(四级标签) yminContent = xmlBuilder.createTextNode(str(yminVal)) ymin.appendChild(yminContent) bndbox.appendChild(ymin) # 3、创建xmax标签 xmax = xmlBuilder.createElement("xmax") # 创建xmax标签(四级标签) xmaxContent = xmlBuilder.createTextNode(str(xmaxVal)) xmax.appendChild(xmaxContent) bndbox.appendChild(xmax) # 4、创建ymax标签 ymax = xmlBuilder.createElement("ymax") # 创建ymax标签(四级标签) ymaxContent = xmlBuilder.createTextNode(str(ymaxVal)) ymax.appendChild(ymaxContent) bndbox.appendChild(ymax) object.appendChild(bndbox) annotation.appendChild(object) # 把object添加为annotation的子标签 f = open(os.path.join(self.xmls_path, txt_name.split('.')[0]+'.xml'), 'w') xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8') f.close() if __name__ == '__main__': txts_path1 = './Annotations_txt' xmls_path1 = './Annotations_xml' imgs_path1 = './JPEGImages' yolo2voc_obj1 = YOLO2VOCConvert(txts_path1, xmls_path1, imgs_path1) labels = yolo2voc.search_all_classes() print('labels: ', labels) yolo2voc_obj1.yolo2voc()
__Author__ = "Shliang" __Email__ = "shliang0603@gmail.com" import os import xml.etree.ElementTree as ET from xml.dom.minidom import Document import cv2 ''' import xml xml.dom.minidom.Document().writexml() def writexml(self, writer: Any, indent: str = "", addindent: str = "", newl: str = "", encoding: Any = None) -> None ''' class YOLO2VOCConvert: def __init__(self, txts_path, xmls_path, imgs_path): self.txts_path = txts_path # 标注的yolo格式标签文件路径 self.xmls_path = xmls_path # 转化为voc格式标签之后保存路径 self.imgs_path = imgs_path # 读取读片的路径个图片名字,存储到xml标签文件中 self.classes = ["shirt", "non_shirt", "western_style_clothes", "coat", "down_filled_coat", "cotton", "sweater", "silk_scarf", "tie", "bow_tie"] # 从所有的txt文件中提取出所有的类别, yolo格式的标签格式类别为数字 0,1,... # writer为True时,把提取的类别保存到'./Annotations/classes.txt'文件中 def search_all_classes(self, writer=False): # 读取每一个txt标签文件,取出每个目标的标注信息 all_names = set() txts = os.listdir(self.txts_path) # 使用列表生成式过滤出只有后缀名为txt的标签文件 txts = [txt for txt in txts if txt.split('.')[-1] == 'txt'] print(len(txts), txts) # 11 ['0002030.txt', '0002031.txt', ... '0002039.txt', '0002040.txt'] for txt in txts: txt_file = os.path.join(self.txts_path, txt) with open(txt_file, 'r') as f: objects = f.readlines() for object in objects: object = object.strip().split(' ') print(object) # ['2', '0.506667', '0.553333', '0.490667', '0.658667'] all_names.add(int(object[0])) # print(objects) # ['2 0.506667 0.553333 0.490667 0.658667\n', '0 0.496000 0.285333 0.133333 0.096000\n', '8 0.501333 0.412000 0.074667 0.237333\n'] print("所有的类别标签:", all_names, "共标注数据集:%d张" % len(txts)) # 把从xmls标签文件中提取的类别写入到'./Annotations/classes.txt'文件中 # if writer: # with open('./Annotations/classes.txt', 'w') as f: # for label in all_names: # f.write(label + '\n') return list(all_names) def yolo2voc(self): # 创建一个保存xml标签文件的文件夹 if not os.path.exists(self.xmls_path): os.mkdir(self.xmls_path) # # 读取每张图片,获取图片的尺寸信息(shape) # imgs = os.listdir(self.imgs_path) # for img_name in imgs: # img = cv2.imread(os.path.join(self.imgs_path, img_name)) # height, width, depth = img.shape # # print(height, width, depth) # h 就是多少行(对应图片的高度), w就是多少列(对应图片的宽度) # # # 读取每一个txt标签文件,取出每个目标的标注信息 # all_names = set() # txts = os.listdir(self.txts_path) # # 使用列表生成式过滤出只有后缀名为txt的标签文件 # txts = [txt for txt in txts if txt.split('.')[-1] == 'txt'] # print(len(txts), txts) # # 11 ['0002030.txt', '0002031.txt', ... '0002039.txt', '0002040.txt'] # for txt_name in txts: # txt_file = os.path.join(self.txts_path, txt_name) # with open(txt_file, 'r') as f: # objects = f.readlines() # for object in objects: # object = object.strip().split(' ') # print(object) # ['2', '0.506667', '0.553333', '0.490667', '0.658667'] # 把上面的两个循环改写成为一个循环: imgs = os.listdir(self.imgs_path) txts = os.listdir(self.txts_path) txts = [txt for txt in txts if not txt.split('.')[0] == "classes"] # 过滤掉classes.txt文件 print(txts) # 注意,这里保持图片的数量和标签txt文件数量相等,且要保证名字是一一对应的 (后面改进,通过判断txt文件名是否在imgs中即可) if len(imgs) == len(txts): # 注意:./Annotation_txt 不要把classes.txt文件放进去 map_imgs_txts = [(img, txt) for img, txt in zip(imgs, txts)] txts = [txt for txt in txts if txt.split('.')[-1] == 'txt'] print(len(txts), txts) for img_name, txt_name in map_imgs_txts: # 读取图片的尺度信息 print("读取图片:", img_name) img = cv2.imread(os.path.join(self.imgs_path, img_name)) height_img, width_img, depth_img = img.shape print(height_img, width_img, depth_img) # h 就是多少行(对应图片的高度), w就是多少列(对应图片的宽度) # 获取标注文件txt中的标注信息 all_objects = [] txt_file = os.path.join(self.txts_path, txt_name) with open(txt_file, 'r') as f: objects = f.readlines() for object in objects: object = object.strip().split(' ') all_objects.append(object) print(object) # ['2', '0.506667', '0.553333', '0.490667', '0.658667'] # 创建xml标签文件中的标签 xmlBuilder = Document() # 创建annotation标签,也是根标签 annotation = xmlBuilder.createElement("annotation") # 给标签annotation添加一个子标签 xmlBuilder.appendChild(annotation) # 创建子标签folder folder = xmlBuilder.createElement("folder") # 给子标签folder中存入内容,folder标签中的内容是存放图片的文件夹,例如:JPEGImages folderContent = xmlBuilder.createTextNode(self.imgs_path.split('/')[-1]) # 标签内存 folder.appendChild(folderContent) # 把内容存入标签 annotation.appendChild(folder) # 把存好内容的folder标签放到 annotation根标签下 # 创建子标签filename filename = xmlBuilder.createElement("filename") # 给子标签filename中存入内容,filename标签中的内容是图片的名字,例如:000250.jpg filenameContent = xmlBuilder.createTextNode(txt_name.split('.')[0] + '.jpg') # 标签内容 filename.appendChild(filenameContent) annotation.appendChild(filename) # 把图片的shape存入xml标签中 size = xmlBuilder.createElement("size") # 给size标签创建子标签width width = xmlBuilder.createElement("width") # size子标签width widthContent = xmlBuilder.createTextNode(str(width_img)) width.appendChild(widthContent) size.appendChild(width) # 把width添加为size的子标签 # 给size标签创建子标签height height = xmlBuilder.createElement("height") # size子标签height heightContent = xmlBuilder.createTextNode(str(height_img)) # xml标签中存入的内容都是字符串 height.appendChild(heightContent) size.appendChild(height) # 把width添加为size的子标签 # 给size标签创建子标签depth depth = xmlBuilder.createElement("depth") # size子标签width depthContent = xmlBuilder.createTextNode(str(depth_img)) depth.appendChild(depthContent) size.appendChild(depth) # 把width添加为size的子标签 annotation.appendChild(size) # 把size添加为annotation的子标签 # 每一个object中存储的都是['2', '0.506667', '0.553333', '0.490667', '0.658667']一个标注目标 for object_info in all_objects: # 开始创建标注目标的label信息的标签 object = xmlBuilder.createElement("object") # 创建object标签 # 创建label类别标签 # 创建name标签 imgName = xmlBuilder.createElement("name") # 创建name标签 imgNameContent = xmlBuilder.createTextNode(self.classes[int(object_info[0])]) imgName.appendChild(imgNameContent) object.appendChild(imgName) # 把name添加为object的子标签 # 创建pose标签 pose = xmlBuilder.createElement("pose") poseContent = xmlBuilder.createTextNode("Unspecified") pose.appendChild(poseContent) object.appendChild(pose) # 把pose添加为object的标签 # 创建truncated标签 truncated = xmlBuilder.createElement("truncated") truncatedContent = xmlBuilder.createTextNode("0") truncated.appendChild(truncatedContent) object.appendChild(truncated) # 创建difficult标签 difficult = xmlBuilder.createElement("difficult") difficultContent = xmlBuilder.createTextNode("0") difficult.appendChild(difficultContent) object.appendChild(difficult) # 先转换一下坐标 # (objx_center, objy_center, obj_width, obj_height)->(xmin,ymin, xmax,ymax) x_center = float(object_info[1])*width_img + 1 y_center = float(object_info[2])*height_img + 1 xminVal = int(x_center - 0.5*float(object_info[3])*width_img) # object_info列表中的元素都是字符串类型 yminVal = int(y_center - 0.5*float(object_info[4])*height_img) xmaxVal = int(x_center + 0.5*float(object_info[3])*width_img) ymaxVal = int(y_center + 0.5*float(object_info[4])*height_img) # 创建bndbox标签(三级标签) bndbox = xmlBuilder.createElement("bndbox") # 在bndbox标签下再创建四个子标签(xmin,ymin, xmax,ymax) 即标注物体的坐标和宽高信息 # 在voc格式中,标注信息:左上角坐标(xmin, ymin) (xmax, ymax)右下角坐标 # 1、创建xmin标签 xmin = xmlBuilder.createElement("xmin") # 创建xmin标签(四级标签) xminContent = xmlBuilder.createTextNode(str(xminVal)) xmin.appendChild(xminContent) bndbox.appendChild(xmin) # 2、创建ymin标签 ymin = xmlBuilder.createElement("ymin") # 创建ymin标签(四级标签) yminContent = xmlBuilder.createTextNode(str(yminVal)) ymin.appendChild(yminContent) bndbox.appendChild(ymin) # 3、创建xmax标签 xmax = xmlBuilder.createElement("xmax") # 创建xmax标签(四级标签) xmaxContent = xmlBuilder.createTextNode(str(xmaxVal)) xmax.appendChild(xmaxContent) bndbox.appendChild(xmax) # 4、创建ymax标签 ymax = xmlBuilder.createElement("ymax") # 创建ymax标签(四级标签) ymaxContent = xmlBuilder.createTextNode(str(ymaxVal)) ymax.appendChild(ymaxContent) bndbox.appendChild(ymax) object.appendChild(bndbox) annotation.appendChild(object) # 把object添加为annotation的子标签 f = open(os.path.join(self.xmls_path, txt_name.split('.')[0]+'.xml'), 'w') xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8') f.close() if __name__ == '__main__': txts_path1 = './Annotations_txt' xmls_path1 = './Annotations_xml' imgs_path1 = './JPEGImages' yolo2voc_obj1 = YOLO2VOCConvert(txts_path1, xmls_path1, imgs_path1) labels = yolo2voc.search_all_classes() print('labels: ', labels) yolo2voc_obj1.yolo2voc()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。