当前位置:   article > 正文

【树莓派+OpenCV+STM32】智能小车巡线_提取线路数据并通过串口通信传输_树莓派和agv小车的stm32串口通信,获得小车数据信息

树莓派和agv小车的stm32串口通信,获得小车数据信息

一、所用材料

  1. 树莓派4B
  2. 树莓派官方摄像头
  3. STM32F103C8T6最小系统板

二、实现功能

        在树莓派上用OpenCV对摄像头中的图像进行处理,将图像处理后的数据通过串口通信给到下位机STM32F103C8T6,再由下位机给出控制信号,利用pid算法实现对小车运动轨迹的控制。硬件连接实物如下图所示。(本文章只讲述到树莓派与下位机之间通信的部分)

三、实现过程

 3.1 树莓派

  1、配置串口

       可以参考 学习笔记一:树莓派与STM32的UART通信 这篇博客的第一章,里面详细讲述了如何改变串口的映射和mini串口调试助手的安装及使用。其中在我安装好minicom后,在终端输入 minicom -D /dev/ttyAMA0 后确实出现了提示没有权限的情况,这个时候需要现在终端输入 sudo chmod 777 /dev/ttyAMA0 再输入 minicom -D /dev/ttyAMA0 就可以正常打开miniocm了。

       按照上面这篇博客的步骤,确保树莓派和电脑之间可以正常通信后再进行下一步操作。

2、调用OpenCV

       在使用OpenCV前可以再确认一下树莓派的通信是否正常,可以试着运行下面的代码。     如果串口通正常,将会间接收到从1-100的数字。

  1. import serial
  2. import time
  3. ser = serial.Serial('/dev/ttyAMA0',115200)
  4. num = 1
  5. while True:
  6. ser.write(str(int(num)).encode() + '\r\n')
  7. num += 1
  8. if num > 100:
  9. num = 1
  10. time.sleep(0.2)

         在确定串口通信正常后,就可以用OpenCV来进行图像处理,在下面呈上我使用的代码。为了使对黑色的识别效果更好,我在代码中加入了高斯模糊来减小噪声,黑色的阈值选定的是60,大家也可以根据具体情况来适当改编代码。

  1. import cv2
  2. import numpy as np
  3. import serial
  4. import time
  5. def main():
  6. # 打开摄像头
  7. cap = cv2.VideoCapture(0)
  8. # 检查摄像头是否成功打开
  9. if not cap.isOpened():
  10. print("无法打开摄像头")
  11. return
  12. ser = serial.Serial('/dev/ttyAMA0',115200)
  13. while True:
  14. start_time = time.time()
  15. # 读取当前帧
  16. ret, frame = cap.read()
  17. # 检查帧是否读取正确
  18. if not ret:
  19. print("???????")
  20. break
  21. # 将图片转到灰度值
  22. gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
  23. #高斯模糊
  24. blurred = cv2.GaussianBlur(gray, (5, 5), 0)
  25. # 设定黑色的阈值范围
  26. _, threshold = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY_INV)
  27. # 寻找轮廓
  28. kernel = np.ones((5, 5), np.uint8)
  29. opening = cv2.morphologyEx(threshold, cv2.MORPH_OPEN, kernel)
  30. _, contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
  31. # 绘制轮廓
  32. centers = []
  33. for contour in contours:
  34. # 计算轮廓的边界值
  35. x, y, w, h = cv2.boundingRect(contour)
  36. if w * h > 100: # 只显示较大的轮廓
  37. cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
  38. center_x = x + w //2
  39. centers.append(center_x)
  40. #发送黑色域的水平中点坐标
  41. if centers:
  42. message =str(centers[0]).encode() + b'\n'
  43. ser.write(message)
  44. # 显示原始图像和结果图像
  45. cv2.imshow('Frame', frame)
  46. cv2.imshow('Threshold', threshold)
  47. # 按q退出
  48. if cv2.waitKey(1) & 0xFF == ord('q'):
  49. break
  50. time.sleep(max(0,0.05 - (time.time() - start_time)))
  51. # 释放摄像头
  52. cap.release()
  53. # 关闭所有窗口
  54. cv2.destroyAllWindows()
  55. if __name__ == '__main__':
  56. main()

       其中,在调用 cv2.findContours 函数时,可能会因为OpenCV版本的问题而导致返回值个数的不同,会出现 “ValueError: too many values to unpack (expected 2)” 的报错。如果在运行中出现了这个报错,可以将寻找轮廓的代码换成下面这段,这样就可以避免因版本不同而带来的问题。

  1. # 寻找轮廓
  2. try:
  3. # OpenCV 4.x及一些3.x版本
  4. contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
  5. except ValueError:
  6. # OpenCV 3.x的更早版本
  7. _, contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

       如果代码运行无误,那么你将会得到如下图所示的结果 ,总体来说识别效果还算不错,黑色区域的轮廓也还算清晰。同时,如果你可以在电脑串口助手上收到黑色区域的水平中点值,那么树莓派的配置工作到此为止就圆满结束了。

      

3.2 STM32

       因为本博客不涉及到控制部分,所以下位机的配置就相对比较简单了,只需要简单的串口接收模块就可以,这里就简单带过,具体有问题的可以参考我的另一篇色块追踪的博客,里面有初始化配置和串口初始化的详细过程,虽然是F407ZGT6的,但是逻辑上和F103C8T6没有太大区别,在此附上连接【OpenMV+STM32】PID控制二维自由舵机色块追踪

  1、CubeMX

       因为芯片不同,所以在时钟树的配置上与F4是不同的,具体数值可以看下图。

       在串口的配置上需要将UART1和USART2都打开,UART1用于与树莓派通信,而UART2用于与电脑通信,便于中间过程的调参。(USART2配置同理)

  2、KEIL

        ①在usart.c的最后加上串口重定向代码。

  1. int fputc(int ch, FILE *f)
  2. {
  3. HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 0xffff);
  4. return ch;
  5. }
  6. int fgetc(FILE *f)
  7. {
  8. uint8_t ch = 0;
  9. HAL_UART_Receive(&huart2, &ch, 1, 0xffff);
  10. return ch;
  11. }

        ②在usart.h中加入库

#include <stdio.h>

        ③在main.c中相应的地方加入串口初始配置

  1. #include <string.h>
  2. #define RxBuffer_MaxSize 256 //最大接收字节数
  3. char RxBuffer[RxBuffer_MaxSize],rx_buf[RxBuffer_MaxSize]; //接收数据
  4. uint8_t aRxBuffer; //接收中断缓冲
  5. uint8_t Uart1_Rx_Cnt = 0; //接收缓冲计数
  6. /* USER CODE BEGIN 2 */
  7. HAL_UART_Receive_IT(&huart1, (uint8_t *)&aRxBuffer, 1);
  8. /* USER CODE END 2 */

        ④在main.c后加入串口回调函数

  1. void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
  2. {
  3. UNUSED(huart);
  4. if(huart == &huart1){
  5. // HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13); // 有数据则翻转LED灯
  6. RxBuffer[Uart1_Rx_Cnt++] = aRxBuffer;
  7. if((RxBuffer[Uart1_Rx_Cnt-1] == '\n'))
  8. { // 检测到帧尾
  9. RxBuffer[Uart1_Rx_Cnt-1] = '\0'; // 替换帧尾为字符串结束符
  10. strcpy(rx_buf, &RxBuffer[0]); // 复制数据到rx_buf,跳过帧头
  11. printf("%s\r\n", rx_buf);
  12. Uart1_Rx_Cnt = 0; // 重置计数器
  13. memset(RxBuffer, 0, sizeof(RxBuffer)); // 清空接收缓冲区
  14. }
  15. HAL_UART_Receive_IT(&huart1, (uint8_t *)&aRxBuffer, 1);
  16. }
  17. }

       由于在树莓派的串口发送中并没有设置帧头,并将帧尾设置成了'\n',所以串口接收的代码相对较简单。如果代码运行无误,且单片机与电脑间的通信顺利,则电脑端也将会收到黑色区域的水平中点值,正如如视频中所示。

黑色域水平中点值传输

四、结语

       本博客只是智能巡线小车中视觉的一部分,后续如果时间允许的话会将整个巡线的功能都写下来,同时之后如果有更好的图像处理代码我也会同步在此篇博客中修改。大家如果在配置过程中遇到什么问题或者发现此博客有任何问题,欢迎私信我或者直接在评论里留言。另外,如果大家现在就对控制模块感兴趣的话,不妨去看下我同实验室队友‘南极熊ii’的博客,他写过一些关于驱动电机的内容,在此附上链接。

[STM32+HAL]DengFOC移植之闭环速度控制

[STM32+HAL]DengFOC移植之闭环位置控制

【STM32+HAL】I2C+DMA读取AS5600编码器

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号