赞
踩
***
另外网上yolov8教程特别多,关于数据集准备和制作这块,可以直接拆分的时候图片也拆分,也可以只记录在txt中,有三种方式所以在制作的时候都可以选择。需要也可以私信把我的处理脚本发你。
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
近期在服务器利用yolov8训练一些通用模型,发现不同时间段clone的yolov8内容和文件路径不同,因为比较新更新变动比较多,训练过程中踩的坑记录下来。
有些bug会因为你的小失误导致一连串的效应,我因为更改labels路径,想去修改utils.py的默认images换成JPEGImages,结果报错是漏下的后引号;然后直接在mobaxterm上打开修改添加后引号,接着开始训练报错乱码问题:
def img2label_paths(img_paths):
"""Define label paths as a function of image paths."""
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
#!/usr/bin/python
# -*- coding: UTF-8 -*-
如果还是不还用,还有笨办法,也是最有效的:出现这种问题基本都是.py文件里的表情符号问题,可以删掉,或者utils.py可以从你的虚拟环境中找到,把缺失的符号乱码问题替换掉即可(注意,不同时段的yolov8文件内容可能不同,别全部copy,只copy需要更换的)
网上有很多方法,比如修改trainer.py文件和model.py文件;或者只修改resume=last.pt后重新跑,报错很多类型,建议直接参考官网方法。
AssertionError: ./yolov8n.pt training to 500 epochs is finished, nothing to resume.
Start a new training without resuming, i.e. ‘yolo train model=./yolov8n.pt’
官网方法没有那么多花里胡哨,而且修改简单,
https://docs.ultralytics.com/modes/train/#resuming-interrupted-trainings官网链接;
打开resume=True后,直接命令行:
yolo train resume model=path/to/last.pt
烟和火全相反了
出现这种情况的原因是标签错误,检查下:
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
出现这个问题的原因,一开始以为是图像质量或者编码问题,因为我在数据处理的时候有格式报错过,
libpng warning: sBIT: invalid
这个警告一直存在,是图像原来有png格式的我强制改后缀jpg造成的。后来借鉴https://blog.csdn.net/Penta_Kill_5/article/details/118085718这篇,应该是我检测类型和标签类型对不上号,比如标签是1-4,而我分三类;或者是标签是1-3,分类0-2。 我想直接更改yaml中nc names设置类型和标签对得上,还是报错,最后直接重新操作数据,csv to json to txt 重新生成对应的txt标签后报错解决。
以海康威视为例,source改成"rtsp://admin:123456@192.168.1.3/Streaming/Channels/1"这个字符串即可,用户名:密码@摄像头地址
1. csv转json
''' 官方给出的csv中的 { "meta":{}, "id":"88eb919f-6f12-486d-9223-cd0c4b581dbf", "items": [ {"meta":{"rectStartPointerXY":[622,2728],"pointRatio":0.5,"geometry":[622,2728,745,3368],"type":"BBOX"},"id":"e520a291-bbf7-4032-92c6-dc84a1fc864e","properties":{"create_time":1620610883573,"accept_meta":{},"mark_by":"LABEL","is_system_map":false},"labels":{"鏍囩":"ground"}} {"meta":{"pointRatio":0.5,"geometry":[402.87,621.81,909,1472.01],"type":"BBOX"},"id":"2c097366-fbb3-4f9d-b5bb-286e70970eba","properties":{"create_time":1620610907831,"accept_meta":{},"mark_by":"LABEL","is_system_map":false},"labels":{"鏍囩":"safebelt"}} {"meta":{"rectStartPointerXY":[692,1063],"pointRatio":0.5,"geometry":[697.02,1063,1224,1761],"type":"BBOX"},"id":"8981c722-79e8-4ae8-a3a3-ae451300d625","properties":{"create_time":1620610943766,"accept_meta":{},"mark_by":"LABEL","is_system_map":false},"labels":{"鏍囩":"offground"}} ], "properties":{"seq":"1714"},"labels":{"invalid":"false"},"timestamp":1620644812068 } ''' import pandas as pd import json import os from PIL import Image df = pd.read_csv(r"E:/safebelt/3train_rname.csv", header=None) df_img_path = df[4] df_img_mark = df[5] # print(df_img_mark) # 统计一下类别,并且重新生成原数据集标注文件,保存到json文件中 dict_class = { "ground": 0, "offground": 0, "safebelt": 0, # "badge": 0 } dict_lable = { "ground": 0, "offground": 1, "safebelt": 2, # "badge": 0 } data_dict_json = [] image_width, image_height = 0, 0 ids = 0 false = False # 将其中false字段转化为布尔值False true = True # 将其中true字段转化为布尔值True for img_id, one_img in enumerate(df_img_mark): # print('img_id',img_id) one_img = eval(one_img)["items"] # print('one_img',one_img) one_img_name = df_img_path[img_id] # print(os.path.join("./", one_img_name)) img = Image.open(os.path.join(r"E:/safebelt", one_img_name)) ids = ids + 1 w, h = img.size image_width += w # print(image_width) image_height += h # print(one_img_name) i=1 for one_mark in one_img: # print('%d '%i,one_mark) one_label = one_mark["labels"]['标签'] # print('%d '%i,one_label) try: dict_class[str(one_label)] += 1 # category = str(one_label) category = dict_lable[str(one_label)] # print('category:', category) bbox = one_mark["meta"]["geometry"] # print('bbox:', bbox) except: # dict_class["badge"] += 1 # 标签为"监护袖章(红only)"表示类别"badge" # # category = "badge" # category = 0 # bbox = one_mark["meta"]["geometry"] continue i += 1 one_dict = {} one_dict["name"] = str(one_img_name) one_dict["category"] = category one_dict["bbox"] = bbox data_dict_json.append(one_dict) print(image_height / ids, image_width / ids) print(dict_class) print(len(data_dict_json)) print(data_dict_json[0]) with open(r"E:/safebelt/data-qudiao.json", 'w') as fp: json.dump(data_dict_json, fp, indent=1, separators=(',', ': ')) # 缩进设置为1,元素之间用逗号隔开 , key和内容之间 用冒号隔开 fp.close()
2. json转txt
import json import os import cv2 file_name_list = {} with open(r"E:/safebelt/data-qudiao.json", 'r', encoding='utf-8') as fr: data_list = json.load(fr) file_name = '' label = 0 [x1, y1, x2, y2] = [0, 0, 0, 0] for data_dict in data_list: for k,v in data_dict.items(): if k == "category": label = v if k == "bbox": [x1, y1, x2, y2] = v if k == "name": file_name = v[9:-4] if not os.path.exists(r'E:/safebelt/data1'): os.mkdir(r'E:/safebelt/data1') print(r'E:/safebelt/3_images/' + file_name + '.jpg') img = cv2.imread(r'E:/safebelt/3_images/' + file_name + '.jpg') size = img.shape # (h, w, channel) dh = 1. / size[0] dw = 1. / size[1] x = (x1 + x2) / 2.0 y = (y1 + y2) / 2.0 w = x2 - x1 h = y2 - y1 x = x * dw w = w * dw y = y * dh h = h * dh # print(size) # cv2.imshow('image', img) # cv2.waitKey(0) content = str(label) + " " + str(x) + " " + str(y) + " " + str(w) + " " + str(h) + "\n" if not content: print(file_name) with open(r'E:/safebelt/data1/' + file_name + '.txt', 'a+', encoding='utf-8') as fw: fw.write(content)
3. xml转txt(根据存放图片的txt转)
# -*- coding: utf-8 -*- # xml解析包 import xml.etree.ElementTree as ET import pickle import os from os import listdir, getcwd from os.path import join sets = ['train', 'test', 'val'] classes = ['fire', 'smoke'] # 进行归一化操作 def convert(size, box): # size:(原图w,原图h) , box:(xmin,xmax,ymin,ymax) dw = 1./size[0] # 1/w dh = 1./size[1] # 1/h x = (box[0] + box[1])/2.0 # 物体在图中的中心点x坐标 y = (box[2] + box[3])/2.0 # 物体在图中的中心点y坐标 w = box[1] - box[0] # 物体实际像素宽度 h = box[3] - box[2] # 物体实际像素高度 x = x*dw # 物体中心点x的坐标比(相当于 x/原图w) w = w*dw # 物体宽度的宽度比(相当于 w/原图w) y = y*dh # 物体中心点y的坐标比(相当于 y/原图h) h = h*dh # 物体宽度的宽度比(相当于 h/原图h) return (x, y, w, h) # 返回 相对于原图的物体中心点的x坐标比,y坐标比,宽度比,高度比,取值范围[0-1] # year ='2012', 对应图片的id(文件名) def convert_annotation(image_id): ''' 将对应文件名的xml文件转化为label文件,xml文件包含了对应的bunding框以及图片长款大小等信息, 通过对其解析,然后进行归一化最终读到label文件中去,也就是说 一张图片文件对应一个xml文件,然后通过解析和归一化,能够将对应的信息保存到唯一一个label文件中去 labal文件中的格式:class x y w h 同时,一张图片对应的类别有多个,所以对应的bunding的信息也有多个 ''' # 对应的通过year 找到相应的文件夹,并且打开相应image_id的xml文件,其对应bund文件 in_file = open('/home/fire1026/Annotations/%s.xml' % (image_id), encoding='utf-8') print(image_id) # 准备在对应的image_id 中写入对应的label,分别为 # <object-class> <x> <y> <width> <height> out_file = open('/home/fire1026/labels/%s.txt' % (image_id), 'w', encoding='utf-8') # 解析xml文件 tree = ET.parse(in_file) # 获得对应的键值对 root = tree.getroot() # 获得图片的尺寸大小 size = root.find('size') # 如果xml内的标记为空,增加判断条件 if size != None: # 获得宽 w = int(size.find('width').text) # 获得高 h = int(size.find('height').text) # 遍历目标obj for obj in root.iter('object'): # 获得difficult ?? difficult = obj.find('difficult').text # 获得类别 =string 类型 cls = obj.find('name').text # 如果类别不是对应在我们预定好的class文件中,或difficult==1则跳过 if cls not in classes or int(difficult) == 1: continue # 通过类别名称找到id cls_id = classes.index(cls) # 找到bndbox 对象 xmlbox = obj.find('bndbox') # 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax'] b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) print(image_id, cls, b) # 带入进行归一化操作 # w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax'] bb = convert((w, h), b) # bb 对应的是归一化后的(x,y,w,h) # 生成 calss x y w h 在label文件中 out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') # 返回当前工作目录 wd = getcwd() print(wd) for image_set in sets: ''' 对所有的文件数据集进行遍历 做了两个工作: 1.将所有图片文件都遍历一遍,并且将其所有的全路径都写在对应的txt文件中去,方便定位 2.同时对所有的图片文件进行解析和转化,将其对应的bundingbox 以及类别的信息全部解析写到label 文件中去 最后再通过直接读取文件,就能找到对应的label 信息 ''' # 先找labels文件夹如果不存在则创建 if not os.path.exists('/home/fire1026/labels/'): os.makedirs('/home/fire1026/labels/') # 读取在ImageSets/Main 中的train、test..等文件的内容 # 包含对应的文件名称 image_ids = open('/home/fire1026/ImageSets/%s.txt' % (image_set)).read().strip().split() print(image_ids) # 打开对应的2012_train.txt 文件对其进行写入准备 list_file = open('/home/fire1026/%s.txt' % (image_set), 'w') # 将对应的文件_id以及全路径写进去并换行 for image_id in image_ids: list_file.write('/home/fire1026/images/%s.jpg\n' % (image_id)) # 调用 year = 年份 image_id = 对应的文件名_id convert_annotation(image_id) # 关闭文件 list_file.close() # print(image_ids) # print(image_id) # print()
4. xml转txt(根据图片文件夹转)
#coding=utf-8 import cv2 import xml.etree.ElementTree as ET import os def convert(size, box): dw = 1./(size[0]) dh = 1./(size[1]) x = (box[0] + box[1])/2.0 - 1 y = (box[2] + box[3])/2.0 - 1 w = box[1] - box[0] h = box[3] - box[2] x = x*dw w = w*dw y = y*dh h = h*dh return (x,y,w,h) def read_cls_txt(filenam): pos = [] clsfile = open(filenam) rows = len(clsfile.readlines()) print("There are %d lines in %s" % (rows, filenam)) if (rows == 0): print(filenam, ": there is no lines") return pos with open(filenam, 'r') as file_to_read: while True: lines = file_to_read.readline() if not lines: break pass print("line:", lines) pos.append(lines.rstrip("\n")) pass print(filenam, pos) return pos def xml2yolotxt(): xml_path = r'D:\pythonProject\1028_fall\fire1026\train\Annotations' obj_img_path = r'D:\pythonProject\1028_fall\fire1026\train\labels' xml_path_list = [] obj_img_path_list = [] obj_img_path_loss_list = [] size_list = [] classes = read_cls_txt(r'D:/pythonProject/1028_fall/fire1026/classes.txt') print("classes:", classes) for xml_name in os.listdir(xml_path): x_name = xml_name.split(".")[0] print("xml_name:", xml_name) xml_path_list.append(xml_name) obj_img_path_list.append(obj_img_path) root = ET.parse(xml_path +"/"+ xml_name).getroot() size = root.find('size') size_list.append(size) w = int(size.find('width').text) print('w:', w) h = int(size.find('height').text) print('h:', h) with open(obj_img_path+"/"+x_name+""+".txt", "w") as out_file: for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: print('转化失败的xml:', obj_img_path) obj_img_path_loss_list.append(obj_img_path) continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w,h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') #print(len(xml_path_list)) #print(len(obj_img_path_list)) #print(len(size_list)) #print(obj_img_path_loss_list) #print(len(obj_img_path_loss_list)) xml2yolotxt()
出现这个问题场景是使用其他编辑器修改json或csv文件后,导致编码格式不能被yolov8识别,
可以使用notepad++,编码→转为UTF-8-BOM 编码 ,然后保存,格式就转回来了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。