赞
踩
最近停在门前的车被人开走了,虽然有监控,但是看监控太麻烦了,于是想着框选一个区域用yolov8直接检测闯入到这个区域的所有目标,这样1ms一帧,很快就可以跑完一天的视频
- #include <opencv2/opencv.hpp>
- #include "inference.h"
-
- using namespace cv;
-
- // 定义一个全局变量,用于存放鼠标框选的矩形区域
- Rect g_rect;
- // 定义一个全局变量,用于标记鼠标是否按下
- bool g_bDrawingBox = false;
-
- // 定义一个回调函数,用于处理鼠标事件
- void on_MouseHandle(int event, int x, int y, int flags, void* param)
- {
- // 将param转换为Mat类型的指针
- Mat& image = *(Mat*) param;
- // 根据不同的鼠标事件进行处理
- switch (event)
- {
- // 鼠标左键按下事件
- case EVENT_LBUTTONDOWN:
- {
- // 标记鼠标已按下
- g_bDrawingBox = true;
- // 记录矩形框的起始点
- g_rect.x = x;
- g_rect.y = y;
- break;
- }
- // 鼠标移动事件
- case EVENT_MOUSEMOVE:
- {
- // 如果鼠标已按下,更新矩形框的宽度和高度
- if (g_bDrawingBox)
- {
- g_rect.width = x - g_rect.x;
- g_rect.height = y - g_rect.y;
- }
- break;
- }
- // 鼠标左键松开事件
- case EVENT_LBUTTONUP:
- {
- // 标记鼠标已松开
- g_bDrawingBox = false;
- // 如果矩形框的宽度和高度为正,绘制矩形框到图像上
- if (g_rect.width > 0 && g_rect.height > 0)
- {
- rectangle(image, g_rect, Scalar(0, 255, 0));
- }
- break;
- }
- }
- }
-
- int main(int argc, char* argv[])
- {
- // 读取视频文件
- cv::VideoCapture vc;
- vc.open(argv[1]);
-
- if(vc.isOpened()){
- cv::Mat frame;
- vc >> frame;
- if(!frame.empty()){
- // 创建一个副本图像,用于显示框选过程
- Mat temp;
- frame.copyTo(temp);
- // 创建一个窗口,显示图像
- namedWindow("image");
- // 设置鼠标回调函数,传入副本图像作为参数
- setMouseCallback("image", on_MouseHandle, (void*)&temp);
- while (1)
- {
- // 如果鼠标正在框选,绘制一个虚线矩形框到副本图像上,并显示框的大小和坐标
- if (g_bDrawingBox)
- {
- temp.copyTo(frame);
- rectangle(frame, g_rect, Scalar(0, 255, 0), 1, LINE_AA);
- char text[32];
- sprintf(text, "w=%d, h=%d", g_rect.width, g_rect.height);
- putText(frame, text, Point(g_rect.x + 5, g_rect.y - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
- }
- // 显示副本图像
- imshow("image", frame);
- // 等待按键,如果按下ESC键,退出循环
- if (waitKey(10) == 27)
- {
- break;
- }
- }
-
- while(!frame.empty()){
- cv::imshow("image", frame);
- cv::waitKey(1);
-
- vc >> frame;
- }
- }
- }
-
- return 0;
- }
inference.h
- #pragma once
-
- #define RET_OK nullptr
-
- #ifdef _WIN32
- #include <Windows.h>
- #include <direct.h>
- #include <io.h>
- #endif
-
- #include <string>
- #include <vector>
- #include <cstdio>
- #include <opencv2/opencv.hpp>
- #include "onnxruntime_cxx_api.h"
-
- #ifdef USE_CUDA
- #include <cuda_fp16.h>
- #endif
-
-
- enum MODEL_TYPE {
- //FLOAT32 MODEL
- YOLO_ORIGIN_V5 = 0,
- YOLO_ORIGIN_V8 = 1,//only support v8 detector currently
- YOLO_POSE_V8 = 2,
- YOLO_CLS_V8 = 3,
- YOLO_ORIGIN_V8_HALF = 4,
- YOLO_POSE_V8_HALF = 5,
- YOLO_CLS_V8_HALF = 6
- };
-
-
- typedef struct _DCSP_INIT_PARAM {
- std::string ModelPath;
- MODEL_TYPE ModelType = YOLO_ORIGIN_V8;
- std::vector<int> imgSize = {640, 640};
- float RectConfidenceThreshold = 0.6;
- float iouThreshold = 0.5;
- bool CudaEnable = false;
- int LogSeverityLevel = 3;
- int IntraOpNumThreads = 1;
- } DCSP_INIT_PARAM;
-
-
- typedef struct _DCSP_RESULT {
- int classId;
- float confidence;
- cv::Rect box;
- } DCSP_RESULT;
-
-
- class DCSP_CORE {
- public:
- DCSP_CORE();
-
- ~DCSP_CORE();
-
- public:
- char *CreateSession(DCSP_INIT_PARAM &iParams);
-
- char *RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult);
-
- char *WarmUpSession();
-
- template<typename N>
- char *TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
- std::vector<DCSP_RESULT> &oResult);
-
- std::vector<std::string> classes{};
-
- private:
- Ort::Env env;
- Ort::Session *session;
- bool cudaEnable;
- Ort::RunOptions options;
- std::vector<const char *> inputNodeNames;
- std::vector<const char *> outputNodeNames;
-
- MODEL_TYPE modelType;
- std::vector<int> imgSize;
- float rectConfidenceThreshold;
- float iouThreshold;
- };
inference.cpp
- #include "inference.h"
- #include <regex>
-
- #define benchmark
-
- DCSP_CORE::DCSP_CORE() {
-
- }
-
-
- DCSP_CORE::~DCSP_CORE() {
- delete session;
- }
-
- #ifdef USE_CUDA
- namespace Ort
- {
- template<>
- struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
- }
- #endif
-
-
- template<typename T>
- char *BlobFromImage(cv::Mat &iImg, T &iBlob) {
- int channels = iImg.channels();
- int imgHeight = iImg.rows;
- int imgWidth = iImg.cols;
-
- for (int c = 0; c < channels; c++) {
- for (int h = 0; h < imgHeight; h++) {
- for (int w = 0; w < imgWidth; w++) {
- iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
- (iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
- }
- }
- }
- return RET_OK;
- }
-
-
- char *PostProcess(cv::Mat &iImg, std::vector<int> iImgSize, cv::Mat &oImg) {
- cv::Mat img = iImg.clone();
- cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
- if (img.channels() == 1) {
- cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
- }
- cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
- return RET_OK;
- }
-
-
- char *DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) {
- char *Ret = RET_OK;
- std::regex pattern("[\u4e00-\u9fa5]");
- bool result = std::regex_search(iParams.ModelPath, pattern);
- if (result) {
- Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters.";
- std::cout << Ret << std::endl;
- return Ret;
- }
- try {
- rectConfidenceThreshold = iParams.RectConfidenceThreshold;
- iouThreshold = iParams.iouThreshold;
- imgSize = iParams.imgSize;
- modelType = iParams.ModelType;
- env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
- Ort::SessionOptions sessionOption;
- if (iParams.CudaEnable) {
- cudaEnable = iParams.CudaEnable;
- OrtCUDAProviderOptions cudaOption;
- cudaOption.device_id = 0;
- sessionOption.AppendExecutionProvider_CUDA(cudaOption);
- }
- sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
- sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
- sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
-
- #ifdef _WIN32
- int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
- wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
- MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
- wide_cstr[ModelPathSize] = L'\0';
- const wchar_t* modelPath = wide_cstr;
- #else
- const char *modelPath = iParams.ModelPath.c_str();
- #endif // _WIN32
-
- session = new Ort::Session(env, modelPath, sessionOption);
- Ort::AllocatorWithDefaultOptions allocator;
- size_t inputNodesNum = session->GetInputCount();
- for (size_t i = 0; i < inputNodesNum; i++) {
- Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
- char *temp_buf = new char[50];
- strcpy(temp_buf, input_node_name.get());
- inputNodeNames.push_back(temp_buf);
- }
- size_t OutputNodesNum = session->GetOutputCount();
- for (size_t i = 0; i < OutputNodesNum; i++) {
- Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
- char *temp_buf = new char[10];
- strcpy(temp_buf, output_node_name.get());
- outputNodeNames.push_back(temp_buf);
- }
- options = Ort::RunOptions{nullptr};
- WarmUpSession();
- return RET_OK;
- }
- catch (const std::exception &e) {
- const char *str1 = "[DCSP_ONNX]:";
- const char *str2 = e.what();
- std::string result = std::string(str1) + std::string(str2);
- char *merged = new char[result.length() + 1];
- std::strcpy(merged, result.c_str());
- std::cout << merged << std::endl;
- delete[] merged;
- return "[DCSP_ONNX]:Create session failed.";
- }
-
- }
-
-
- char *DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult) {
- #ifdef benchmark
- clock_t starttime_1 = clock();
- #endif // benchmark
-
- char *Ret = RET_OK;
- cv::Mat processedImg;
- PostProcess(iImg, imgSize, processedImg);
- if (modelType < 4) {
- float *blob = new float[processedImg.total() * 3];
- BlobFromImage(processedImg, blob);
- std::vector<int64_t> inputNodeDims = {1, 3, imgSize.at(0), imgSize.at(1)};
- TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
- } else {
- #ifdef USE_CUDA
- half* blob = new half[processedImg.total() * 3];
- BlobFromImage(processedImg, blob);
- std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
- TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
- #endif
- }
-
- return Ret;
- }
-
-
- template<typename N>
- char *DCSP_CORE::TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
- std::vector<DCSP_RESULT> &oResult) {
- Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
- Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
- inputNodeDims.data(), inputNodeDims.size());
- #ifdef benchmark
- clock_t starttime_2 = clock();
- #endif // benchmark
- auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
- outputNodeNames.size());
- #ifdef benchmark
- clock_t starttime_3 = clock();
- #endif // benchmark
-
- Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
- auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
- std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
- auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
- delete blob;
- switch (modelType) {
- case 1://V8_ORIGIN_FP32
- case 4://V8_ORIGIN_FP16
- {
- int strideNum = outputNodeDims[2];
- int signalResultNum = outputNodeDims[1];
- std::vector<int> class_ids;
- std::vector<float> confidences;
- std::vector<cv::Rect> boxes;
-
- cv::Mat rawData;
- if (modelType == 1) {
- // FP32
- rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output);
- } else {
- // FP16
- rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output);
- rawData.convertTo(rawData, CV_32F);
- }
- rawData = rawData.t();
- float *data = (float *) rawData.data;
-
- float x_factor = iImg.cols / 640.;
- float y_factor = iImg.rows / 640.;
- for (int i = 0; i < strideNum; ++i) {
- float *classesScores = data + 4;
- cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
- cv::Point class_id;
- double maxClassScore;
- cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
- if (maxClassScore > rectConfidenceThreshold) {
- confidences.push_back(maxClassScore);
- class_ids.push_back(class_id.x);
-
- float x = data[0];
- float y = data[1];
- float w = data[2];
- float h = data[3];
-
- int left = int((x - 0.5 * w) * x_factor);
- int top = int((y - 0.5 * h) * y_factor);
-
- int width = int(w * x_factor);
- int height = int(h * y_factor);
-
- boxes.emplace_back(left, top, width, height);
- }
- data += signalResultNum;
- }
-
- std::vector<int> nmsResult;
- cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
-
- for (int i = 0; i < nmsResult.size(); ++i) {
- int idx = nmsResult[i];
- DCSP_RESULT result;
- result.classId = class_ids[idx];
- result.confidence = confidences[idx];
- result.box = boxes[idx];
- oResult.push_back(result);
- }
-
-
- #ifdef benchmark
- clock_t starttime_4 = clock();
- double pre_process_time = (double) (starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
- double process_time = (double) (starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
- double post_process_time = (double) (starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
- if (cudaEnable) {
- std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time
- << "ms inference, " << post_process_time << "ms post-process." << std::endl;
- } else {
- std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time
- << "ms inference, " << post_process_time << "ms post-process." << std::endl;
- }
- #endif // benchmark
-
- break;
- }
- }
- return RET_OK;
- }
-
-
- char *DCSP_CORE::WarmUpSession() {
- clock_t starttime_1 = clock();
- cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
- cv::Mat processedImg;
- PostProcess(iImg, imgSize, processedImg);
- if (modelType < 4) {
- float *blob = new float[iImg.total() * 3];
- BlobFromImage(processedImg, blob);
- std::vector<int64_t> YOLO_input_node_dims = {1, 3, imgSize.at(0), imgSize.at(1)};
- Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
- Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
- YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
- auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
- outputNodeNames.size());
- delete[] blob;
- clock_t starttime_4 = clock();
- double post_process_time = (double) (starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
- if (cudaEnable) {
- std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
- }
- } else {
- #ifdef USE_CUDA
- half* blob = new half[iImg.total() * 3];
- BlobFromImage(processedImg, blob);
- std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
- Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
- auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
- delete[] blob;
- clock_t starttime_4 = clock();
- double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
- if (cudaEnable)
- {
- std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
- }
- #endif
- }
- return RET_OK;
- }
main.cpp
- int read_coco_yaml(DCSP_CORE *&p) {
- // Open the YAML file
- std::ifstream file("coco.yaml");
- if (!file.is_open()) {
- std::cerr << "Failed to open file" << std::endl;
- return 1;
- }
-
- // Read the file line by line
- std::string line;
- std::vector<std::string> lines;
- while (std::getline(file, line)) {
- lines.push_back(line);
- }
-
- // Find the start and end of the names section
- std::size_t start = 0;
- std::size_t end = 0;
- for (std::size_t i = 0; i < lines.size(); i++) {
- if (lines[i].find("names:") != std::string::npos) {
- start = i + 1;
- } else if (start > 0 && lines[i].find(':') == std::string::npos) {
- end = i;
- break;
- }
- }
-
- // Extract the names
- std::vector<std::string> names;
- for (std::size_t i = start; i < end; i++) {
- std::stringstream ss(lines[i]);
- std::string name;
- std::getline(ss, name, ':'); // Extract the number before the delimiter
- std::getline(ss, name); // Extract the string after the delimiter
- names.push_back(name);
- }
-
- p->classes = names;
- return 0;
- }
-
- int main(int argc, char* argv[])
- {
- DCSP_CORE *yoloDetector = new DCSP_CORE;
- //std::string model_path = "yolov8n.onnx";
- std::string model_path = argv[1];
- read_coco_yaml(yoloDetector);
- #ifdef USE_CUDA
- // GPU FP32 inference
- DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, true };
- // GPU FP16 inference
- // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640}, 0.1, 0.5, true };
- #else
- // CPU inference
- DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false};
- #endif
- yoloDetector->CreateSession(params);
-
- cv::VideoCapture vc;
- vc.open(argv[2]);
-
- if(vc.isOpened()){
- cv::Mat frame;
- vc >> frame;
- while(!frame.empty()){
- std::vector<DCSP_RESULT> res;
- yoloDetector->RunSession(frame, res);
-
- for (int i = 0; i < res.size(); ++i)
- {
- DCSP_RESULT detection = res[i];
-
- cv::Rect box = detection.box;
- cv::RNG rng(cv::getTickCount());
- cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));;
-
- // Detection box
- cv::rectangle(frame, box, color, 2);
-
- // Detection box text
- std::string classString = yoloDetector->classes[detection.classId] + ' ' + std::to_string(detection.confidence).substr(0, 4);
- cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);
- cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
-
- cv::rectangle(frame, textBox, color, cv::FILLED);
- cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);
- }
- cv::rectangle(frame, g_rect, Scalar(0, 255, 0), 3, cv::LINE_AA);
-
- cv::imshow("image", frame);
- cv::waitKey(1);
-
- vc >> frame;
- }
- }
- }
- #include <opencv2/opencv.hpp>
- #include <fstream>
- #include "inference.h"
-
- using namespace cv;
-
- // 定义一个全局变量,用于存放鼠标框选的矩形区域
- Rect g_rect;
- // 定义一个全局变量,用于标记鼠标是否按下
- bool g_bDrawingBox = false;
-
- // 定义一个回调函数,用于处理鼠标事件
- void on_MouseHandle(int event, int x, int y, int flags, void* param)
- {
- // 将param转换为Mat类型的指针
- Mat& image = *(Mat*) param;
- // 根据不同的鼠标事件进行处理
- switch (event)
- {
- // 鼠标左键按下事件
- case EVENT_LBUTTONDOWN:
- {
- // 标记鼠标已按下
- g_bDrawingBox = true;
- // 记录矩形框的起始点
- g_rect.x = x;
- g_rect.y = y;
- break;
- }
- // 鼠标移动事件
- case EVENT_MOUSEMOVE:
- {
- // 如果鼠标已按下,更新矩形框的宽度和高度
- if (g_bDrawingBox)
- {
- g_rect.width = x - g_rect.x;
- g_rect.height = y - g_rect.y;
- }
- break;
- }
- // 鼠标左键松开事件
- case EVENT_LBUTTONUP:
- {
- // 标记鼠标已松开
- g_bDrawingBox = false;
- // 如果矩形框的宽度和高度为正,绘制矩形框到图像上
- if (g_rect.width > 0 && g_rect.height > 0)
- {
- rectangle(image, g_rect, Scalar(0, 255, 0));
- }
- break;
- }
- }
- }
-
- int read_coco_yaml(DCSP_CORE *&p) {
- // Open the YAML file
- std::ifstream file("coco.yaml");
- if (!file.is_open()) {
- std::cerr << "Failed to open file" << std::endl;
- return 1;
- }
-
- // Read the file line by line
- std::string line;
- std::vector<std::string> lines;
- while (std::getline(file, line)) {
- lines.push_back(line);
- }
-
- // Find the start and end of the names section
- std::size_t start = 0;
- std::size_t end = 0;
- for (std::size_t i = 0; i < lines.size(); i++) {
- if (lines[i].find("names:") != std::string::npos) {
- start = i + 1;
- } else if (start > 0 && lines[i].find(':') == std::string::npos) {
- end = i;
- break;
- }
- }
-
- // Extract the names
- std::vector<std::string> names;
- for (std::size_t i = start; i < end; i++) {
- std::stringstream ss(lines[i]);
- std::string name;
- std::getline(ss, name, ':'); // Extract the number before the delimiter
- std::getline(ss, name); // Extract the string after the delimiter
- names.push_back(name);
- }
-
- p->classes = names;
- return 0;
- }
-
- int main(int argc, char* argv[])
- {
- // 读取原始图像
- // Mat src = imread(argv[1]);
-
- DCSP_CORE *yoloDetector = new DCSP_CORE;
- //std::string model_path = "yolov8n.onnx";
- std::string model_path = argv[1];
- read_coco_yaml(yoloDetector);
- #ifdef USE_CUDA
- // GPU FP32 inference
- DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, true };
- // GPU FP16 inference
- // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640}, 0.1, 0.5, true };
- #else
- // CPU inference
- DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false};
- #endif
- yoloDetector->CreateSession(params);
-
- cv::VideoCapture vc;
- vc.open(argv[2]);
-
- if(vc.isOpened()){
- cv::Mat frame;
- vc >> frame;
- if(!frame.empty()){
- // 创建一个副本图像,用于显示框选过程
- Mat temp;
- frame.copyTo(temp);
- // 创建一个窗口,显示图像
- namedWindow("image");
- // 设置鼠标回调函数,传入副本图像作为参数
- setMouseCallback("image", on_MouseHandle, (void*)&temp);
- while (1)
- {
- // 如果鼠标正在框选,绘制一个虚线矩形框到副本图像上,并显示框的大小和坐标
- if (g_bDrawingBox)
- {
- temp.copyTo(frame);
- rectangle(frame, g_rect, Scalar(0, 255, 0), 1, LINE_AA);
- char text[32];
- sprintf(text, "w=%d, h=%d", g_rect.width, g_rect.height);
- putText(frame, text, Point(g_rect.x + 5, g_rect.y - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
- }
- // 显示副本图像
- imshow("image", frame);
- // 等待按键,如果按下ESC键,退出循环
- if (waitKey(10) == 27)
- {
- break;
- }
- }
-
- while(!frame.empty()){
- std::vector<DCSP_RESULT> res;
- yoloDetector->RunSession(frame, res);
-
- for (int i = 0; i < res.size(); ++i)
- {
- DCSP_RESULT detection = res[i];
-
- cv::Rect box = detection.box;
- cv::RNG rng(cv::getTickCount());
- cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));;
-
- // Detection box
- cv::rectangle(frame, box, color, 2);
-
- // Detection box text
- std::string classString = yoloDetector->classes[detection.classId] + ' ' + std::to_string(detection.confidence).substr(0, 4);
- cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);
- cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
-
- cv::rectangle(frame, textBox, color, cv::FILLED);
- cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);
- }
- cv::rectangle(frame, g_rect, Scalar(0, 255, 0), 3, cv::LINE_AA);
-
- cv::imshow("image", frame);
- cv::waitKey(1);
-
- vc >> frame;
- }
- }
- }
-
- return 0;
- }
- double calIou(const cv::Rect& rc1, const cv::Rect& rc2)
- {
- cv::Rect intersection = rc1 & rc2;
-
- if (!intersection.empty()) {
- double intersectionArea = intersection.width * intersection.height;
- double rect1Area = rc1.width * rc1.height;
- double rect2Area = rc2.width * rc2.height;
-
- // 计算IOU
- double iou = intersectionArea / (rect1Area + rect2Area - intersectionArea);
- return iou;
- } else {
- // 没有重叠,IOU为0
- return 0.0;
- }
- }
不断的去循环激活的目标,来过滤掉重复的代码,这块以后实现
- #include <opencv2/opencv.hpp>
- #include <fstream>
- #include "inference.h"
-
- using namespace cv;
-
- // 定义一个全局变量,用于存放鼠标框选的矩形区域
- Rect g_rect;
- // 定义一个全局变量,用于标记鼠标是否按下
- bool g_bDrawingBox = false;
-
- // 定义一个回调函数,用于处理鼠标事件
- void on_MouseHandle(int event, int x, int y, int flags, void* param)
- {
- // 将param转换为Mat类型的指针
- Mat& image = *(Mat*) param;
- // 根据不同的鼠标事件进行处理
- switch (event)
- {
- // 鼠标左键按下事件
- case EVENT_LBUTTONDOWN:
- {
- // 标记鼠标已按下
- g_bDrawingBox = true;
- // 记录矩形框的起始点
- g_rect.x = x;
- g_rect.y = y;
- break;
- }
- // 鼠标移动事件
- case EVENT_MOUSEMOVE:
- {
- // 如果鼠标已按下,更新矩形框的宽度和高度
- if (g_bDrawingBox)
- {
- g_rect.width = x - g_rect.x;
- g_rect.height = y - g_rect.y;
- }
- break;
- }
- // 鼠标左键松开事件
- case EVENT_LBUTTONUP:
- {
- // 标记鼠标已松开
- g_bDrawingBox = false;
- // 如果矩形框的宽度和高度为正,绘制矩形框到图像上
- if (g_rect.width > 0 && g_rect.height > 0)
- {
- rectangle(image, g_rect, Scalar(0, 255, 0));
- }
- break;
- }
- }
- }
-
- int read_coco_yaml(DCSP_CORE *&p) {
- // Open the YAML file
- std::ifstream file("coco.yaml");
- if (!file.is_open()) {
- std::cerr << "Failed to open file" << std::endl;
- return 1;
- }
-
- // Read the file line by line
- std::string line;
- std::vector<std::string> lines;
- while (std::getline(file, line)) {
- lines.push_back(line);
- }
-
- // Find the start and end of the names section
- std::size_t start = 0;
- std::size_t end = 0;
- for (std::size_t i = 0; i < lines.size(); i++) {
- if (lines[i].find("names:") != std::string::npos) {
- start = i + 1;
- } else if (start > 0 && lines[i].find(':') == std::string::npos) {
- end = i;
- break;
- }
- }
-
- // Extract the names
- std::vector<std::string> names;
- for (std::size_t i = start; i < end; i++) {
- std::stringstream ss(lines[i]);
- std::string name;
- std::getline(ss, name, ':'); // Extract the number before the delimiter
- std::getline(ss, name); // Extract the string after the delimiter
- names.push_back(name);
- }
-
- p->classes = names;
- return 0;
- }
-
- double calIou(const cv::Rect& rc1, const cv::Rect& rc2)
- {
- cv::Rect intersection = rc1 & rc2;
-
- if (!intersection.empty()) {
- double intersectionArea = intersection.width * intersection.height;
- double rect1Area = rc1.width * rc1.height;
- double rect2Area = rc2.width * rc2.height;
-
- // 计算IOU
- double iou = intersectionArea / (rect1Area + rect2Area - intersectionArea);
- return iou;
- } else {
- // 没有重叠,IOU为0
- return 0.0;
- }
- }
-
- int main(int argc, char* argv[])
- {
- // 读取原始图像
- // Mat src = imread(argv[1]);
-
- DCSP_CORE *yoloDetector = new DCSP_CORE;
- //std::string model_path = "yolov8n.onnx";
- std::string model_path = argv[1];
- read_coco_yaml(yoloDetector);
- #ifdef USE_CUDA
- // GPU FP32 inference
- DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, true };
- // GPU FP16 inference
- // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640}, 0.1, 0.5, true };
- #else
- // CPU inference
- DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false};
- #endif
- yoloDetector->CreateSession(params);
-
- cv::VideoCapture vc;
- vc.open(argv[2]);
-
- if(vc.isOpened()){
- cv::Mat frame;
- vc >> frame;
- if(!frame.empty()){
- // 创建一个副本图像,用于显示框选过程
- Mat temp;
- frame.copyTo(temp);
- // 创建一个窗口,显示图像
- namedWindow("image");
- // 设置鼠标回调函数,传入副本图像作为参数
- setMouseCallback("image", on_MouseHandle, (void*)&temp);
- while (1)
- {
- // 如果鼠标正在框选,绘制一个虚线矩形框到副本图像上,并显示框的大小和坐标
- if (g_bDrawingBox)
- {
- temp.copyTo(frame);
- rectangle(frame, g_rect, Scalar(0, 255, 0), 1, LINE_AA);
- char text[32];
- sprintf(text, "w=%d, h=%d", g_rect.width, g_rect.height);
- putText(frame, text, Point(g_rect.x + 5, g_rect.y - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
- }
- // 显示副本图像
- imshow("image", frame);
- // 等待按键,如果按下ESC键,退出循环
- if (waitKey(10) == 27)
- {
- break;
- }
- }
-
- while(!frame.empty()){
- std::vector<DCSP_RESULT> res;
- yoloDetector->RunSession(frame, res);
-
- for (int i = 0; i < res.size(); ++i)
- {
- DCSP_RESULT detection = res[i];
-
- cv::Rect box = detection.box;
- cv::RNG rng(cv::getTickCount());
- cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));;
-
- // Detection box
- cv::rectangle(frame, box, color, 2);
-
- // Detection box text
- std::string classString = yoloDetector->classes[detection.classId] + ' ' + std::to_string(detection.confidence).substr(0, 4);
- cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);
- cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
-
- cv::rectangle(frame, textBox, color, cv::FILLED);
- cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);
-
- double iou = calIou(g_rect, box);
- if(iou > 0)
- std::cout << "iou:" << iou << std::endl;
- }
- cv::rectangle(frame, g_rect, Scalar(0, 255, 0), 3, cv::LINE_AA);
-
- cv::imshow("image", frame);
- cv::waitKey(1);
-
- vc >> frame;
- }
- }
- }
-
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。