当前位置:   article > 正文

OpenCV 对比度受限的自适应直方图均衡化(CLAHE) C++实现_opencv createclahe c++

opencv createclahe c++

直方图均衡化(HE)是一种很常用的直方图类方法,基本思想是通过图像的灰度分布直方图确定一条映射曲线,用来对图像进行灰度变换,以达到提高图像对比度的目的。该映射曲线其实就是图像的累计分布直方图(CDF)(严格来说是呈正比例关系)。然而HE是对图像全局进行调整的方法,不能有效地提高局部对比度,而且某些场合效果会非常差。
对比度受限的自适应直方图均衡(CLAHE,Contrast Limited Adaptive Histogram Equalization)算法。尽管最初它仅仅是被当作一种图像增强算法被提出,但是现今在图像去雾、低照度图像增强,水下图像效果调节、以及数码照片改善等方面都有应用。这个算法的算法原理看似简单,但是实现起来却并不那么容易。我们将结合相应的OpenCV代码来对其进行解释。

先来看一下待处理的图像效果:

下面是利用CLAHE算法处理之后得到的两个效果(后面我们还会具体介绍我们所使用的策略)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/78900
推荐阅读
相关标签
  

闽ICP备14008679号