赞
踩
本文整理汇总了Python中cv2.minMaxLoc方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.minMaxLoc方法的具体用法?Python cv2.minMaxLoc怎么用?Python cv2.minMaxLoc使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块cv2
的用法示例。
在下文中一共展示了cv2.minMaxLoc方法的22个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
点赞 7
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def match_img(image, template, value):
- """
- :param image: 图片
- :param template: 模板
- :param value: 阈值
- :return: 水印坐标
- 描述:用于获得这幅图片模板对应的位置坐标,用途:校准元素位置信息
- """
- res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)
- threshold = value
- min_v, max_v, min_pt, max_pt = cv2.minMaxLoc(res)
- if max_v < threshold:
- return False
- if not max_pt[0] in range(10, 40) or max_pt[1] > 20:
- return False
- return max_pt
开发者ID:Mingtzge,项目名称:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代码行数:18,代码来源:split_img_generate_data.py
点赞 7
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def get_match_confidence(img1, img2, mask=None):
- if img1.shape != img2.shape:
- return False
- ## first try, using absdiff
- # diff = cv2.absdiff(img1, img2)
- # h, w, d = diff.shape
- # total = h*w*d
- # num = (diff<20).sum()
- # print 'is_match', total, num
- # return num > total*0.90
- if mask is not None:
- img1 = img1.copy()
- img1[mask!=0] = 0
- img2 = img2.copy()
- img2[mask!=0] = 0
- ## using match
- match = cv2.matchTemplate(img1, img2, cv2.TM_CCOEFF_NORMED)
- _, confidence, _, _ = cv2.minMaxLoc(match)
- # print confidence
- return confidence
开发者ID:NetEaseGame,项目名称:ATX,代码行数:22,代码来源:scene_detector.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def probability(self, im: str) -> float:
- """
- Return the probability of the existence of given image.
- :param im: the name of the image.
- :return: the probability (confidence).
- """
- assert self.screen is not None
- try:
- template = self.images[im]
- except KeyError:
- logger.error('Unexpected image name {}'.format(im))
- return 0.0
-
- res = cv.matchTemplate(self.screen, template, TM_METHOD)
- _, max_val, _, max_loc = cv.minMaxLoc(res)
- logger.debug('max_val = {}, max_loc = {}'.format(max_val, max_loc))
- return max_val
开发者ID:will7101,项目名称:fgo-bot,代码行数:20,代码来源:tm.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def find(self, im: str, threshold: float = None) -> Tuple[int, int]:
- """
- Find the template image on screen and return its top-left coords.
- Return None if the matching value is less than `threshold`.
- :param im: the name of the image
- :param threshold: the threshold of matching. If not given, will be set to the default threshold.
- :return: the top-left coords of the result. Return (-1, -1) if not found.
- """
- threshold = threshold or self.threshold
-
- assert self.screen is not None
- try:
- template = self.images[im]
- except KeyError:
- logger.error('Unexpected image name {}'.format(im))
- return -1, -1
-
- res = cv.matchTemplate(self.screen, template, TM_METHOD)
- _, max_val, _, max_loc = cv.minMaxLoc(res)
- logger.debug('max_val = {}, max_loc = {}'.format(max_val, max_loc))
- return max_loc if max_val >= threshold else (-1, -1)
开发者ID:will7101,项目名称:fgo-bot,代码行数:25,代码来源:tm.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def cal_rgb_confidence(img_src_rgb, img_sch_rgb):
- """同大小彩图计算相似度."""
- # BGR三通道心理学权重:
- weight = (0.114, 0.587, 0.299)
- src_bgr, sch_bgr = cv2.split(img_src_rgb), cv2.split(img_sch_rgb)
-
- # 计算BGR三通道的confidence,存入bgr_confidence:
- bgr_confidence = [0, 0, 0]
- for i in range(3):
- res_temp = cv2.matchTemplate(src_bgr[i], sch_bgr[i], cv2.TM_CCOEFF_NORMED)
- min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res_temp)
- bgr_confidence[i] = max_val
-
- # 加权可信度
- weighted_confidence = bgr_confidence[0] * weight[0] + bgr_confidence[1] * weight[1] + bgr_confidence[2] * weight[2]
-
- return weighted_confidence
开发者ID:AirtestProject,项目名称:Airtest,代码行数:19,代码来源:cal_confidence.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def find_template(im_source, im_search, threshold=0.8, rgb=False):
- """函数功能:找到最优结果."""
- # 第一步:校验图像输入
- check_source_larger_than_search(im_source, im_search)
- # 第二步:计算模板匹配的结果矩阵res
- res = _get_template_result_matrix(im_source, im_search)
- # 第三步:依次获取匹配结果
- min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
- h, w = im_search.shape[:2]
- # 求取可信度:
- confidence = _get_confidence_from_matrix(im_source, im_search, max_loc, max_val, w, h, rgb)
- # 求取识别位置: 目标中心 + 目标区域:
- middle_point, rectangle = _get_target_rectangle(max_loc, w, h)
- best_match = generate_result(middle_point, rectangle, confidence)
- LOGGING.debug("threshold=%s, result=%s" % (threshold, best_match))
- return best_match if confidence >= threshold else None
开发者ID:AirtestProject,项目名称:Airtest,代码行数:18,代码来源:template.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def match_dmg_templates(self, frame):
- match_mat, max_val, tl = [None]*10, [0]*10, [(0, 0)]*10
- for i in range(0, 10):
- match_mat[i] = cv2.matchTemplate(frame, self.num_img[0],
- cv2.TM_CCORR_NORMED, mask=self.num_mask[0])
- _, max_val[i], _, tl[i] = cv2.minMaxLoc(match_mat[i])
- # print(max_val[0])
- br = (tl[0][0] + self.num_w, tl[0][1] + self.num_h)
- frame = cv2.rectangle(frame, tl[0], br, (255, 255, 255), 2)
-
- # Multi-template result searching
- # _, max_val_1, _, tl_1 = cv2.minMaxLoc(np.array(match_mat))
- # print(tl_1)
-
-
- # A number of methods corresponding to the various trackbars available.
开发者ID:jpnaterer,项目名称:smashscan,代码行数:18,代码来源:thresholding.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def main():
- src = cv2.imread('src.jpg', cv2.IMREAD_GRAYSCALE)
- tpl = cv2.imread('tpl.jpg', cv2.IMREAD_GRAYSCALE)
- result = cv2.matchTemplate(src, tpl, cv2.TM_CCOEFF_NORMED)
- result = cv2.normalize(result, dst=None, alpha=0, beta=1,
- norm_type=cv2.NORM_MINMAX, dtype=-1)
- minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(result)
- matchLoc = maxLoc
- draw1 = cv2.rectangle(
- src, matchLoc, (matchLoc[0] + tpl.shape[1], matchLoc[1] + tpl.shape[0]), 0, 2, 8, 0)
- draw2 = cv2.rectangle(
- result, matchLoc, (matchLoc[0] + tpl.shape[1], matchLoc[1] + tpl.shape[0]), 0, 2, 8, 0)
- cv2.imshow('draw1', draw1)
- cv2.imshow('draw2', draw2)
- cv2.waitKey(0)
- print src.shape
- print tpl.shape
- print result.shape
- print matchLoc
开发者ID:cynricfu,项目名称:dual-fisheye-video-stitching,代码行数:21,代码来源:template_matching.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def detect(self, z, x):
- k = self.gaussianCorrelation(x, z)
- # 得到响应图
- res = real(fftd(complexMultiplication(self._alphaf, fftd(k)), True))
-
- # pv:响应最大值 pi:相应最大点的索引数组
- _, pv, _, pi = cv2.minMaxLoc(res)
- # 得到响应最大的点索引的float表示
- p = [float(pi[0]), float(pi[1])]
-
- # 使用幅值做差来定位峰值的位置
- if pi[0] > 0 and pi[0] < res.shape[1] - 1:
- p[0] += self.subPixelPeak(res[pi[1], pi[0] - 1], pv, res[pi[1], pi[0] + 1])
- if pi[1] > 0 and pi[1] < res.shape[0] - 1:
- p[1] += self.subPixelPeak(res[pi[1] - 1, pi[0]], pv, res[pi[1] + 1, pi[0]])
-
- # 得出偏离采样中心的位移
- p[0] -= res.shape[1] / 2.
- p[1] -= res.shape[0] / 2.
-
- # 返回偏离采样中心的位移和峰值
- return p, pv
-
- # 基于当前帧更新目标位置
开发者ID:ryanfwy,项目名称:KCF-DSST-py,代码行数:26,代码来源:tracker.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def detect_scale(self, image):
- xsf = self.get_scale_sample(image)
-
- # Compute AZ in the paper
- add_temp = cv2.reduce(complexMultiplication(self.sf_num, xsf), 0, cv2.REDUCE_SUM)
-
- # compute the final y
- scale_response = cv2.idft(complexDivisionReal(add_temp, (self.sf_den + self.scale_lambda)), None, cv2.DFT_REAL_OUTPUT)
-
- # Get the max point as the final scaling rate
- # pv:响应最大值 pi:相应最大点的索引数组
- _, pv, _, pi = cv2.minMaxLoc(scale_response)
-
- return pi
-
- # 更新尺度
开发者ID:ryanfwy,项目名称:KCF-DSST-py,代码行数:18,代码来源:tracker.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def imagesearcharea(image, x1, y1, x2, y2, precision=0.8, im=None):
- if im is None:
- im = region_grabber(region=(x1, y1, x2, y2))
- if is_retina:
- im.thumbnail((round(im.size[0] * 0.5), round(im.size[1] * 0.5)))
- # im.save('testarea.png') usefull for debugging purposes, this will save the captured region as "testarea.png"
-
- img_rgb = np.array(im)
- img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
- template = cv2.imread(image, 0)
-
- res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
- min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
- if max_val < precision:
- return [-1, -1]
- return max_loc
开发者ID:drov0,项目名称:python-imagesearch,代码行数:18,代码来源:imagesearch.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def locate_img(image, template):
- img = image.copy()
- res = cv2.matchTemplate(img, template, method)
- print res
- print res.shape
- cv2.imwrite('image/shape.png', res)
- min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
- print cv2.minMaxLoc(res)
- if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
- top_left = min_loc
- else:
- top_left = max_loc
- h, w = template.shape
- bottom_right = (top_left[0] + w, top_left[1]+h)
- cv2.rectangle(img, top_left, bottom_right, 255, 2)
- cv2.imwrite('image/tt.jpg', img)
开发者ID:NetEase,项目名称:airtest,代码行数:18,代码来源:pixelmatch.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def getKeypoints(probMap, threshold=0.1):
-
- mapSmooth = cv2.GaussianBlur(probMap, (3, 3), 0, 0)
- mapMask = np.uint8(mapSmooth>threshold)
- keypoints = []
- contours = None
- try:
- #OpenCV4.x
- contours, _ = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
- except:
- #OpenCV3.x
- _, contours, _ = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
-
- for cnt in contours:
- blobMask = np.zeros(mapMask.shape)
- blobMask = cv2.fillConvexPoly(blobMask, cnt, 1)
- maskedProbMap = mapSmooth * blobMask
- _, maxVal, _, maxLoc = cv2.minMaxLoc(maskedProbMap)
- keypoints.append(maxLoc + (probMap[maxLoc[1], maxLoc[0]],))
-
- return keypoints
开发者ID:PINTO0309,项目名称:MobileNetV2-PoseEstimation,代码行数:23,代码来源:openvino-usbcamera-cpu-ncs2-async.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def _locate_target(self, score):
- def subpixel_peak(left, center, right):
- divisor = 2 * center - left - right
- if abs(divisor) < 1e-3:
- return 0
- return 0.5 * (right - left) / divisor
-
- _, _, _, max_loc = cv2.minMaxLoc(score)
- loc = np.float32(max_loc)
-
- if max_loc[0] in range(1, score.shape[1] - 1):
- loc[0] += subpixel_peak(
- score[max_loc[1], max_loc[0] - 1],
- score[max_loc[1], max_loc[0]],
- score[max_loc[1], max_loc[0] + 1])
- if max_loc[1] in range(1, score.shape[0] - 1):
- loc[1] += subpixel_peak(
- score[max_loc[1] - 1, max_loc[0]],
- score[max_loc[1], max_loc[0]],
- score[max_loc[1] + 1, max_loc[0]])
- offset = loc - np.float32(score.shape[1::-1]) / 2
-
- return offset
开发者ID:huanglianghua,项目名称:open-vot,代码行数:25,代码来源:kcf.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def SMAvgLocalMax(self, src):
- # size
- stepsize = pySaliencyMapDefs.default_step_local
- width = src.shape[1]
- height = src.shape[0]
- # find local maxima
- numlocal = 0
- lmaxmean = 0
- for y in range(0, height-stepsize, stepsize):
- for x in range(0, width-stepsize, stepsize):
- localimg = src[y:y+stepsize, x:x+stepsize]
- lmin, lmax, dummy1, dummy2 = cv2.minMaxLoc(localimg)
- lmaxmean += lmax
- numlocal += 1
- # averaging over all the local regions
- return lmaxmean / numlocal
- # normalization specific for the saliency map model
开发者ID:tyarkoni,项目名称:pliers,代码行数:19,代码来源:pySaliencyMap.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def matchAB(fileA, fileB):
- # 读取图像数据
- imgA = cv2.imread(fileA)
- imgB = cv2.imread(fileB)
-
- # 转换成灰色
- grayA = cv2.cvtColor(imgA, cv2.COLOR_BGR2GRAY)
- grayB = cv2.cvtColor(imgB, cv2.COLOR_BGR2GRAY)
-
- # 获取图片A的大小
- height, width = grayA.shape
-
- # 取局部图像,寻找匹配位置
- result_window = np.zeros((height, width), dtype=imgA.dtype)
- for start_y in range(0, height-100, 10):
- for start_x in range(0, width-100, 10):
- window = grayA[start_y:start_y+100, start_x:start_x+100]
- match = cv2.matchTemplate(grayB, window, cv2.TM_CCOEFF_NORMED)
- _, _, _, max_loc = cv2.minMaxLoc(match)
- matched_window = grayB[max_loc[1]:max_loc[1]+100, max_loc[0]:max_loc[0]+100]
- result = cv2.absdiff(window, matched_window)
- result_window[start_y:start_y+100, start_x:start_x+100] = result
-
- plt.imshow(result_window)
- plt.show()
开发者ID:cangyan,项目名称:image-detect,代码行数:27,代码来源:image_detect_02.py
点赞 6
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def detect(self, z, x):
- k = self.gaussianCorrelation(x, z)
- res = real(fftd(complexMultiplication(self._alphaf, fftd(k)), True))
-
- _, pv, _, pi = cv2.minMaxLoc(res) # pv:float pi:tuple of int
- p = [float(pi[0]), float(pi[1])] # cv::Point2f, [x,y] #[float,float]
-
- if(pi[0]>0 and pi[0]<res.shape[1]-1):
- p[0] += self.subPixelPeak(res[pi[1],pi[0]-1], pv, res[pi[1],pi[0]+1])
- if(pi[1]>0 and pi[1]<res.shape[0]-1):
- p[1] += self.subPixelPeak(res[pi[1]-1,pi[0]], pv, res[pi[1]+1,pi[0]])
-
- p[0] -= res.shape[1] / 2.
- p[1] -= res.shape[0] / 2.
-
- return p, pv
开发者ID:uoip,项目名称:KCFnb,代码行数:18,代码来源:kcftracker.py
点赞 5
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def image_search(x_start :int, y_start :int, x_end :int, y_end :int,
- img :str, threshold :int, bmp :image =None) -> Optional[Tuple[int, int]]:
- """Search the screen for the supplied picture.
-
- Returns a tuple with x,y-coordinates, or None if result is below
- the threshold.
-
- Keyword arguments:
- image -- Filename or path to file that you search for.
- threshold -- The level of fuzziness to use - a perfect match will be
- close to 1, but probably never 1. In my testing use a
- value between 0.7-0.95 depending on how strict you wish
- to be.
- bmp -- a bitmap from the get_bitmap() function, use this if you're
- performing multiple different OCR-readings in succession
- from the same page. This is to avoid to needlessly get the
- same bitmap multiple times. If a bitmap is not passed, the
- function will get the bitmap itself. (default None)
- """
- if not bmp: bmp = Inputs.get_bitmap()
- # Bitmaps are created with a 8px border
- search_area = bmp.crop((x_start + 8, y_start + 8,
- x_end + 8, y_end + 8))
- search_area = numpy.asarray(search_area)
- search_area = cv2.cvtColor(search_area, cv2.COLOR_RGB2GRAY)
- template = cv2.imread(img, 0)
- res = cv2.matchTemplate(search_area, template, cv2.TM_CCOEFF_NORMED)
- _, max_val, _, max_loc = cv2.minMaxLoc(res)
- if max_val < threshold:
- return None
-
- return max_loc
开发者ID:kujan,项目名称:NGU-scripts,代码行数:34,代码来源:inputs.py
点赞 5
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def MatchTemplate(template, target):
- """Returns match score for given template"""
- res = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
- min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
- return max_val
开发者ID:cfircohen,项目名称:airport,代码行数:7,代码来源:solver.py
点赞 5
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def match_img(self, image, target, value, rematch=False):
- """
- :param image: 原始图片
- :param target: 匹配模板
- :param value: 匹配阈值
- :param rematch: false,初赛水印,true复赛水印
- :return: 水印外轮廓坐标,原始图片灰度图,水印内轮廓
- """
- img_rgb = cv2.imread(image)
- h, w, c = img_rgb.shape
- img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
- template = cv2.imread(target, 0)
- th, tw = template.shape
- max_v1 = 0
- if not rematch:
- template = template[16:56, 20:186]
- else:
- template = template[18:107, 19:106]
- res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
- threshold = value
- min_v, max_v, min_pt, max_pt = cv2.minMaxLoc(res)
- if max_v < threshold:
- return False, False, False
- if not rematch:
- template1 = cv2.imread(self.roi_rematch_img_path, 0)
- template1 = template1[18:107, 19:106]
- res1 = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
- min_v1, max_v1, min_pt1, max_pt1 = cv2.minMaxLoc(res1)
- if max_v < max_v1: # 避免两种水印匹配重叠的情况
- return False, False, False
- if not rematch:
- x = 20
- y = 16
- else:
- x = 19
- y = 18
- ori_pt = (min(w - tw - 1, max(max_pt[0] - x, 0)), max(0, min(max_pt[1] - y, h - th - 1)))
- return ori_pt, img_gray, max_pt
开发者ID:Mingtzge,项目名称:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代码行数:40,代码来源:watermask_process.py
点赞 5
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def compare_a_template(img_gray, template): # 函数返回模板匹配的最大值
- """
- 将图片与模板对比,比较相似度
- :param img_gray: 灰度图片
- :param template: 模板图片
- :return: 相似度,介于[0,1]
- """
- #img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转为灰度图
- res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) # 模板匹配
- _, max_val, _, _ = cv2.minMaxLoc(res)
- return max_val # 返回的是归一化的相似度的最大值,值位于0-1之间
开发者ID:Mingtzge,项目名称:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代码行数:13,代码来源:twist_part.py
点赞 5
- # 需要导入模块: import cv2 [as 别名]
- # 或者: from cv2 import minMaxLoc [as 别名]
- def match_template1(template, img, plot=False, method=cv2.TM_SQDIFF_NORMED):
- img = cv2.imread(img, 0).copy()
- template = cv2.imread(template, 0)
- w, h = template.shape[::-1]
- if lib == OPENCV:
- res = cv2.matchTemplate(img, template, method)
- min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
- if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
- top_left = min_loc
- else:
- top_left = max_loc
- else:
- result = match_template(img, template)
- ij = np.unravel_index(np.argmax(result), result.shape)
- top_left = ij[::-1]
-
- bottom_right = (top_left[0] + w, top_left[1] + h)
-
- if plot:
- cv2.rectangle(img, top_left, bottom_right, 255, 5)
- plt.subplot(121)
- plt.imshow(img)
- plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
- plt.subplot(122)
- plt.imshow(template)
-
- plt.show()
-
- return top_left, bottom_right
开发者ID:tobyqin,项目名称:kog-money,代码行数:31,代码来源:match.py
注:本文中的cv2.minMaxLoc方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。