赞
踩
用labelimg对自己的数据做好标注,只有一类预测桃子图像。
注释文件保存为xml格式,满足PASCAL VOC风格,如下图1把图片和标签放在一个文件夹内(data)
需将标记完的数据集xml的文件转换为TFRecord格式的文件
1、先转换为csv格式
转换代码为:
import os import glob import pandas as pd import xml.etree.ElementTree as ET def xml_to_csv(path): xml_list = [] # 读取注释文件 for xml_file in glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): value = (root.find('filename').text, int(root.find('size')[0].text), int(root.find('size')[1].text), member[0].text, int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax'] # 将所有数据分为样本集和验证集,一般按照3:1的比例 train_list = xml_list[0: int(len(xml_list) * 0.67)] eval_list = xml_list[int(len(xml_list) * 0.67) + 1: ] # 保存为CSV格式 train_df = pd.DataFrame(train_list, columns=column_name) eval_df = pd.DataFrame(eval_list, columns=column_name) train_df.to_csv('D:/programs/models-master/research/object_detection/data/train_peaches.csv', index=None) eval_df.to_csv('D:/programs/models-master/research/object_detection/data/eval_peaches.csv', index=None) def main(): path = 'D:/dataset/data' xml_to_csv(path) print('Successfully converted xml to csv.') main()
2、再转换为TFRecord格式
转换代码为:
from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import io import pandas as pd import tensorflow as tf from PIL import Image from object_detection.utils import dataset_util from collections import namedtuple, OrderedDict flags = tf.app.flags flags.DEFINE_string('csv_input', '', 'Path to the CSV input') flags.DEFINE_string('output_path', '', 'Path to output TFRecord') FLAGS = flags.FLAGS # 将分类名称转成ID号 def class_text_to_int(row_label): if row_label == 'peach': return 1 else: print('NONE: ' + row_label) None def split(df, group): data = namedtuple('data', ['filename', 'object']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path): print(os.path.join(path, '{}'.format(group.filename))) with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def main(csv_input, output_path, imgPath): writer = tf.python_io.TFRecordWriter(output_path) path = imgPath examples = pd.read_csv(csv_input) grouped = split(examples, 'filename') for group in grouped: tf_example = create_tf_example(group, path) writer.write(tf_example.SerializeToString()) writer.close() print('Successfully created the TFRecords: {}'.format(output_path)) if __name__ == '__main__': imgPath = 'D:/dataset/data' # 生成train.record文件 output_path = 'D:/programs/models-master/research/object_detection/data/train_peaches.record' csv_input = 'D:/programs/models-master/research/object_detection/data/train_peaches.csv' main(csv_input, output_path, imgPath) # 生成验证文件 eval.record output_path = 'D:/programs/models-master/research/object_detection/data/eval_peaches.record' csv_input = 'D:/programs/models-master/research/object_detection/data/eval_peaches.csv' main(csv_input, output_path, imgPath)
如下图:
结果如图
参考博客:
https://blog.csdn.net/RobinTomps/article/details/78115628?locationNum=5&fps=1
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。