当前位置:   article > 正文

离散化及模板详解_离散化模版

离散化模版

⭐写在前面的话:本系列文章旨在复习算法刷题中常用的基础算法与数据结构,配以详细的图例解释,总结相应的代码模板,同时结合例题以达到最佳的学习效果。本专栏面向算法零基础但有一定的C++基础的学习者。若C++基础不牢固,可参考:10min快速回顾C++语法,进行语法复习。

离散化

基本思想

首先,离散化是指数值域非常大,例如 1 − 1 0 6 1-10^6 1106,但是个数相对较少,例如只有 1 0 3 10^3 103个, 但在我们的程序中需要通过这些数值作为下标,且依赖的是这些数值之间的顺序关系(当然通常这些数是有序的)。如果为了这 1 0 3 10^3 103个数而开一个 1 0 6 10^6 106的数组过于浪费空间,因此我们可以采用离散化的方法,将这些数映射到 0 − 1 0 3 0-10^3 0103上,这个过程就叫做离散化。

注意:这里的映射数字指的是元素的下标数字,而非元素本身的数值。

算法思路

对于有序数组进行映射,其基本思路如下:

image-20221013133143457

针对可能存在的两个问题,有以下的解决方法:

1.数组中可能存在重复元素 ==> 对数组进行去重

常见写法:用cpp中的库函数来实现。

unique函数:将数组中的元素去重,并且返回去重后数组的尾端点。

image-20221013133734502

vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end());   // 去掉重复元素
  • 1
  • 2
  • 3

2.如何算出x离散化后的值 ==> 用二分法

int find(int x) // 找到第一个大于等于x的位置
{
    int l = 0, r = alls.size() - 1;
    while (l < r)
    {
        int mid = l + r >> 1;
        if (alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    // 映射到1, 2, ...n
    // 不加1的话是从0开始映射。
    return r + 1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

模板

vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end());   // 去掉重复元素

// 二分求出x对应的离散化的值
int find(int x) // 找到第一个大于等于x的位置
{
    int l = 0, r = alls.size() - 1;
    while (l < r)
    {
        int mid = l + r >> 1;
        if (alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    // 映射到1, 2, ...n
    // 不加1的话是从0开始映射。
    return r + 1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

例题:区间和

假定有一个无限长的数轴,数轴上每个坐标上的数都是 0。

现在,我们首先进行 n 次操作,每次操作将某一位置 x 上的数加c。

接下来,进行 m 次询问,每个询问包含两个整数 l 和 r,你需要求出在区间 [l,r]之间的所有数的和。

输入格式

第一行包含两个整数 n 和 m。

接下来 n 行,每行包含两个整数 x 和 c。

再接下来 m 行,每行包含两个整数 l 和 r。

输出格式

共 m 行,每行输出一个询问中所求的区间内数字和。

数据范围

− 1 0 9 ≤ x ≤ 1 0 9 −10^9≤x≤10^9 109x109,
1 ≤ n , m ≤ 1 0 5 1≤n,m≤10^5 1n,m105,
− 1 0 9 ≤ l ≤ r ≤ 1 0 9 −10^9≤l≤r≤10^9 109lr109,
− 10000 ≤ c ≤ 10000 −10000≤c≤10000 10000c10000

输入样例

3 3
1 2
3 6
7 5
1 3
4 6
7 8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

输出样例

8
0
5
  • 1
  • 2
  • 3
题目分析

数据范围很大,因此不能用哈希表,并且数轴上的数字是离散的,整体是稀疏的,我们可以采用离散化的方式进行映射。

  • add : 保存真实的下标和相应的值
  • alls : 用来保存真实的下标和映射的下标的关系
  • query : 用来保存查询的左右两个端点
  • a : 保存映射的坐标所对应的值
  • s: 保存映射的坐标所对应的值的前缀和

第一步: 输入数轴上所对应的值

for(int i=0;i<n;i++)
{
	int index,x; cin>>index>>x;
	add.push_back({index,x});//index 是我们真实的下标 x是数值
	alls.push_back(index);// 将真实的下标和我们想象的坐标建立映射关系
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

第二步: 输入我们的查询的区间

for(int i=0;i<m;i++)
	{
		int l,r; cin>>l>>r;
		query.push_back({l,r});//保存查询的区间
		
		alls.push_back(l);
		//将其左右端点也映射进来,目的是可以让我们在虚拟的映射表里找到,这对于我们后面的前缀和操作时是十分的方便的。
		//如果当我们在虚拟的映射表里找的时候,如果没有找到左右端点,那么前缀和无法求。
		alls.push_back(r);
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

第三步: 将虚拟的坐标排序并去重

为啥去重:
是因为当我们输入
3 5
3 6
即给数轴上3的点加5 再加 6时。此时我们的坐标映射表里有了两个3 3 但其实它们对应的是同一个坐标。故需要去重,排序。

 sort(alls.begin(), alls.end());//排序
 alls.erase(unique(alls), alls.end());//去重(坐标)
  • 1
  • 2

第四步:根据真的坐标,来找到对应虚拟的坐标,将其位置加上其相对应的数值。
根据真的坐标找其对应的映射的坐标,用二分来查找。

int find(int x)
{
	int l=0,r=alls.size()-1;
	while(l<r)
	{
		int mid=l+r>>1;
		if(alls[mid]>=x) r=mid;
		else l=mid+1;
	}
	return l+1;//  因为要求前缀和,故下标从1开始方便,不用额外的再处理边界。
}

for(int i=0;i<add.size();i++)
{
		int x=find(add[i].first);
		a[x]+=add[i].second;
} 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

最后一步: 求前缀和,根据我们的查询的区间来输出区间的和

for(int i=1;i<=alls.size();i++) s[i]=s[i-1]+a[i];
	
for(int i=0;i<query.size();i++)
{
	int l=find(query[i].first),r=find(query[i].second);
	cout<<s[r]-s[l-1]<<endl;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
code
#include<iostream>
#include<algorithm>
#include<vector>

using namespace std;

typedef pair<int, int>PII;

const int N = 300010;

int n,m;
int a[N],s[N];// a[N]是储存的数组,s[N]储存前缀和

vector<int> alls;
// 定义了两个pair的变量,add和query。
vector<PII> add, query;

int find(int x)
{
    int l = 0, r = alls.size() - 1;
    while(l < r)
    {
        int mid = l + r >> 1;
        if (alls[mid] >= x)r = mid;
        else l = mid + 1;
    }
    return r + 1;
}

int main()
{
    cin >> n >> m;
    // 对数字与坐标输入
    for(int i = 0; i < n; i++)
    {
        int x,c;
        cin >> x >> c;
        add.push_back({x, c});
        
        alls.push_back(x);
    }
    // 对左右边界输入
    for(int i = 0; i < m; i++)
    {
        int l, r;
        cin >> l >> r;
        query.push_back({l, r});
        
        alls.push_back(l);
        alls.push_back(r);
        
    }
    // 进行去重
    sort(alls.begin(), alls.end());
    alls.erase(unique(alls.begin(),alls.end()), alls.end());
    // 遍历add
    for(auto item : add)
    {
        // 找到该值的位置
        int x = find(item.first);
        // 用数组存储该值,相当于在空数组上加上这个数字
        a[x] += item.second;
    }
    // 前缀和数组
    for(int i = 1; i <= alls.size(); i++)s[i] = s[i - 1] + a[i];
    
    for(auto item : query)
    {
        // 找到左右边界的位置
        int l = find(item.first), r = find(item.second);
        // 输出该段的和
        cout << s[r] - s[l - 1] << endl;
    }
    return 0;
    
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76

注意:经过此过程,alls数组上只有要添加的值与区间的边界。

上面是c++的写法,通常在Java和Python中也可以自己实现这种去重的unique算法。可以采用双指针算法实现。

写一个迭代器数组,双指针判断,遍历数组,如果元素不是首数字且不和后一位相同,则记录在a[j]数组中。

注意是在同一个数组中操作的,但是可以保证去重数组长度始终小于等于原数组。最后返回a[0] ~ a[j - 1]即可。

vector<int>::iterator unique(vector<int> &a)
{
    int j = 0;
    for(int i = 0; i < a.size(); i++)
    {
        if(!i || a[i] != a[i - 1])
            a[j++] = a[i];
    }
    // 在a[0] ~ a[j - 1]有所有a中不重复的数
    return a.begin() + j;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/128037
推荐阅读
相关标签
  

闽ICP备14008679号