当前位置:   article > 正文

大模型的实践应用4-ChatGLM-6b大模型的结构与核心代码解读,最全的ChatGLM模型架构介绍与源码解读

chatglm-6b

大家好,我是微学AI,今天给大家介绍一下大模型的实践应用4-ChatGLM大模型的结构与核心代码解读,最全的ChatGLM模型架构介绍与源码解读,本文介绍将ChatGLM-6B的模型结构,与设计原理。 主要代码来自:https://huggingface.co/THUDM/chatglm-6b/blob/main/modeling_chatglm.py
在这里插入图片描述

一、ChatGLM模型介绍

ChatGLM-6B是有清华团队开发的开源大语言模型,可以用中文和英文进行问答对话。它有着62亿个参数,它采用了General Language Model (GLM)架构,并且通过模型量化技术,可以在普通的显卡上运行(只需6GB显存)。为了优化中文问答和对话,ChatGLM-6B经过了大约1T的中英双语训练,并结合了监督微调、反馈自助和人类反馈强化学习等技术。现在,这个具有62亿参数的ChatGLM-6B已经可以生成非常符合人类喜好的回答了。对于学术研究人员来说,ChatGLM-6B的权重是完全开放的,目前已经发展开发出ChatGLM2-6B,对模型有些升级与改造。

二、ChatGLM模型结构思想

2.1自回归空格填充的任务

ChatGLM模型引入了一种全新的自回归空格填充的任务,例如下图: 对原始的数据 x 1 , x 2 , x 3 , x 4 , x 5 , x 6 x_1,x_2,x_3,x_4,x_5,x_6 x1,x2,x3,x4,x5,x6,随机 m a s k mask mask x 3 x_3 x3 x 5 , x 6 x_5,x_6 x5,x6,目标就是利用未 m a s k mask mask的来自回归式预测被 m a s k mask mask的信息。图 ( c ) (c) (c)可以看到,不同于 M L M MLM MLM的结构,这里通过两种位置编码,就能自回归式预测被 m a s k mask mask的信息。这里有 p o s i t i o n 1 position1 position1 p o s i t o n 2 positon2 positon2两种 p o s i t i o n position position p o s i t i o n 1 position1 position1标记的是整体的位置信息; p o s i t i o n 2 position2 position2标记的是每个被 m a s k mask mask的块内部的相对位置信息。在 ( d ) (d) (d)中就很清晰地展示出对于未被 m a s k mask mask的信息(用来做 p r o m p t prompt prompt的),在计算self-attention的时候,全部没有 m a s k mask mask,也就是上下文都可见,对于第一块遮挡的信息 x 5 , x 6 x_5,x_6 x5,x6,自己区域内呈下三角形状,也就是自回归预测形式,第二块 m a s k mask mask的信息 x 3 x_3 x3,由于这时候 x 5 x_5 x5 x 6 x_6 x6已经预测出来了,因此对于 x 3 x_3 x3也变得可见。
在这里插入图片描述

2.2 ChatGLM的激活函数选择

ChatGLM-6B使用的激活函数为GELU,其可以近似实现为:
G E L U ( x ) ≈ 0.5 x ( 1 + tanh ⁡ ( 2 π ( x + 0.044715 x 3 ) ) ) GELU(x)\approx 0.5x(1+ \tanh(\sqrt{\frac{2}{\pi}}(x+0.044715x^{3}))) GELU(x)0.5x(1+tanh(π2 (x+0.044715x3)))

@torch.jit.script
def gelu_impl(x):
    return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
                                       (1.0 + 0.044715 * x * x)))
def gelu(x):
    return gelu_impl(x)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

ChatGLM2-6B(升级版)模型则使用的 SwiGLU 激活函数:

其实在大模型LLaMA中全连接层也使用了SwiGLU 激活函数,它的计算公式如下:
F F N S w i G L U ( x , W , V , W 2 ) = S w i G L U ( x , W , V ) W 2 FFN_{SwiGLU}(x,W,V,W_{2})=SwiGLU(x,W,V)W_{2} FFNSwiGLU(x,W,V,W2)=SwiGLU(x,W,V)W2
S w i G L U ( x , W , V ) = S w i s h β ( x W ) ⊗ x V SwiGLU(x,W,V)=Swish_{\beta}(xW)\otimes xV SwiGLU(x,W,V)=Swishβ(xW)xV
S w i s h β ( x ) = x σ ( β x ) Swish_{\beta}(x)=x \sigma(\beta x) Swishβ(x)=xσ(βx)
其中, σ ( x ) σ(x) σ(x) S i g m o i d Sigmoid Sigmoid函数。

三、ChatGLM模型的GLU层

ChatGLM定义了一个名为GLU模块。GLU通过将输入数据与由另一层计算出的“门”值相乘,来实现对输入数据的选择性过滤。设定特定版本的GLU模型首先将输入hidden_states通过一个线性变换(self.dense_h_to_4h)扩展到4倍的维度,然后对其应用激活函数。其中的激活函数是GELU。然后,它再次将结果投影回原始维度(self.dense_4h_to_h)。

class GLU(torch.nn.Module):
    def __init__(self, hidden_size, inner_hidden_size=None,
                 layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float, empty_init=True):
        super(GLU, self).__init__()
        if empty_init:
            init_method = skip_init
        else:
            init_method = default_init
        self.layer_id = layer_id
        self.activation_func = activation_func

        self.hidden_size = hidden_size
        if inner_hidden_size is None:
            inner_hidden_size = 4 * hidden_size
        self.inner_hidden_size = inner_hidden_size
        self.dense_h_to_4h = init_method(
            torch.nn.Linear,
            self.hidden_size,
            self.inner_hidden_size,
            bias=bias,
            dtype=params_dtype,
        )
        # Project back to h.
        self.dense_4h_to_h = init_method(
            torch.nn.Linear,
            self.inner_hidden_size,
            self.hidden_size,
            bias=bias,
            dtype=params_dtype,
        )

    def forward(self, hidden_states):
        
        intermediate_parallel = self.dense_h_to_4h(hidden_states)

        intermediate_parallel = self.activation_func(intermediate_parallel)

        output = self.dense_4h_to_h(intermediate_parallel)

        return output
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

四、ChatGLM的位置编码:RoPE

在位置编码上,ChatGLM使用旋转位置嵌入(Rotary Positional Embeddings,RoPE)代替原有的绝对位置编码。

RoPE借助了复数的思想,出发点是通过绝对位置编码的方式实现相对位置编码。其目标是通过下述运算来给 q , k q,k q,k添加绝对位置信息:
q ~ m = f ( q , m ) , k ~ n = f ( k , n ) \tilde{q}_{m}=f(q,m), \tilde{k}_{n}=f(k,n) q~m=f(q,m),k~n=f(k,n)
经过上述操作后, q ~ m \tilde{q}_{m} q~m k ~ n \tilde{k}_{n} k~n就带有位置 m m m n n n 的绝对位置信息。

最终可以得到二维情况下用复数表示的 RoPE:
f ( q , m ) = R f ( q , m ) e i θ f ( q , m ) = ∣ q ∣ e i ( θ ( q ) + m θ ) = q e i m θ f(q,m)=R_{f}(q,m)e^{i \theta _{f}(q,m)}=|q|e^{i(\theta(q)+m \theta)}=qe^{im \theta} f(q,m)=Rf(q,m)eiθf(q,m)=qei(θ(q)+mθ)=qeimθ
根据复数乘法的几何意义,上述变换实际上是对应向量旋转,所以位置向量称为“旋转式位置编码”。还可以使用矩阵形式表示:
f ( q , m ) = ( cos ⁡ m θ − sin ⁡ cos ⁡ m θ sin ⁡ m θ cos ⁡ m θ ) ( q 0 q 1 ) f ( q , m ) = \left(

cosmθsincosmθsinmθcosmθ
\right) \left(
q0q1
\right) f(q,m)=(cosmθsinmθsincosmθcosmθ)(q0q1)

ChatGLM模型中定义了一个名为RotaryEmbedding的模块,用于实现旋转嵌入(Rotary Embedding)。它可以捕获序列中单词的位置信息。

RotaryEmbedding模型中定义各个方法的功能:
1 __init__: 初始化函数。定义了embedding维度(dim),基数(base),精度(precision)等参数,并根据是否可学习(learnable)设置inverse frequency (inv_freq)为参数或缓冲区。

2._load_from_state_dict: 这是一个PyTorch内部函数,用于从状态字典加载模型参数。在这里没有进行实现。

3.forward: 前向传播函数。首先计算出输入序列长度(seq_len),然后根据seq_len和inv_freq计算频率(freqs)。接着将freqs复制并拼接到emb上,并根据精度将其转换为相应类型。最后计算cosine和sine值,并缓存起来以供后续使用。

4._apply: PyTorch内部函数,对缓存的cosine和sine值应用给定操作(fn)。

数学计算过程:
inv_freq:inverse frequency(逆频率)是通过对等差数列[0, 2, …, dim-2]除以dim做归一化后取base的负指数得到。
freqs:通过将时间步长t(一个长度为seq_len、元素值从0到seq_len-1的向量)与inv_freq做外积得到。
emb:emb是由两份freqs拼接而成。
cos_cached 和 sin_cached: 是emb中每个元素分别取余弦和正弦得到。

通过对位置索引生成周期性信号(余弦和正弦),进而构建了能够捕获相对位置关系的embedding,也就实现了所谓“旋转”的效果,代码如下:

class RotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
        super().__init__()
        inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
        inv_freq = inv_freq.half()
        self.learnable = learnable
        if learnable:
            self.inv_freq = torch.nn.Parameter(inv_freq)
            self.max_seq_len_cached = None
        else:
            self.register_buffer('inv_freq', inv_freq)
            self.max_seq_len_cached = None
            self.cos_cached = None
            self.sin_cached = None
        self.precision = precision

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
                              error_msgs):
        pass

    def forward(self, x, seq_dim=1, seq_len=None):
        if seq_len is None:
            seq_len = x.shape[seq_dim]
        if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
            self.max_seq_len_cached = None if self.learnable else seq_len
            t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum('i,j->ij', t, self.inv_freq)
            
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            if self.precision == torch.bfloat16:
                emb = emb.float()

            # [sx, 1 (b * np), hn]
            cos_cached = emb.cos()[:, None, :]
            sin_cached = emb.sin()[:, None, :]
            if self.precision == torch.bfloat16:
                cos_cached = cos_cached.bfloat16()
                sin_cached = sin_cached.bfloat16()
            if self.learnable:
                return cos_cached, sin_cached
            self.cos_cached, self.sin_cached = cos_cached, sin_cached
        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]

    def _apply(self, fn):
        if self.cos_cached is not None:
            self.cos_cached = fn(self.cos_cached)
        if self.sin_cached is not None:
            self.sin_cached = fn(self.sin_cached)
        return super()._apply(fn)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

五、ChatGLM的注意力层

ChatGLM采用标准的自注意力机制,在自注意力机制中,输入是一组查询(query) Q Q Q, 键(key) K K K, 值(value) V V V. 这三者都是由输入序列经过线性变换得到。然后计算查询和键之间点积作为权重,并通过softmax函数进行归一化: Attention ( Q , K , V ) = s o f t m a x ( Q K T d ) V \text{Attention}(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d}})V Attention(Q,K,V)=softmax(d QKT)V

代码中,函数attention_fn实现了自注意力机制:

def attention_fn(
        self,
        query_layer,
        key_layer,
        value_layer,
        attention_mask,
        hidden_size_per_partition,
        layer_id,
        layer_past=None,
        scaling_attention_score=True,
        use_cache=False,
):
    if layer_past is not None:
        past_key, past_value = layer_past[0], layer_past[1]
        key_layer = torch.cat((past_key, key_layer), dim=0)
        value_layer = torch.cat((past_value, value_layer), dim=0)

    # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
    seq_len, b, nh, hidden_size = key_layer.shape

    if use_cache:
        present = (key_layer, value_layer)
    else:
        present = None

    query_key_layer_scaling_coeff = float(layer_id + 1)
    if scaling_attention_score:
        query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)

    # [b, np, sq, sk]
    output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))

    # [sq, b, np, hn] -> [sq, b * np, hn]
    query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
    # [sk, b, np, hn] -> [sk, b * np, hn]
    key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)

    matmul_result = torch.zeros(
        1, 1, 1,
        dtype=query_layer.dtype,
        device=query_layer.device,
    )

    matmul_result = torch.baddbmm(
        matmul_result,
        query_layer.transpose(0, 1),  # [b * np, sq, hn]
        key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
        beta=0.0,
        alpha=1.0,
    )

    # change view to [b, np, sq, sk]
    attention_scores = matmul_result.view(*output_size)

    if self.scale_mask_softmax:
        self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
        attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
    else:
        if not (attention_mask == 0).all():
            # if auto-regressive, skip
            attention_scores.masked_fill_(attention_mask, -10000.0)
        dtype = attention_scores.dtype
        attention_scores = attention_scores.float()
        attention_scores = attention_scores * query_key_layer_scaling_coeff

        attention_probs = F.softmax(attention_scores, dim=-1)

        attention_probs = attention_probs.type(dtype)

    # context layer shape: [b, np, sq, hn]
    output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))

    # change view [sk, b * np, hn]
    value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)

    attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
    # 注意力分数乘以value,得到最终的输出context
    context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
    context_layer = context_layer.view(*output_size)
    context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
    new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
    context_layer = context_layer.view(*new_context_layer_shape)

    outputs = (context_layer, present, attention_probs)

    return outputs
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

下面是SelfAttention模块,模块中调用attention_fn实现注意力机制,代码如下:

class SelfAttention(torch.nn.Module):
    def __init__(self, hidden_size, num_attention_heads,
                 layer_id, hidden_size_per_attention_head=None, bias=True,
                 params_dtype=torch.float, position_encoding_2d=True, empty_init=True):
        if empty_init:
            init_method = skip_init
        else:
            init_method = default_init
        super(SelfAttention, self).__init__()

        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.hidden_size_per_partition = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_attention_heads_per_partition = num_attention_heads
        self.position_encoding_2d = position_encoding_2d
        self.rotary_emb = RotaryEmbedding(
            self.hidden_size // (self.num_attention_heads * 2)
            if position_encoding_2d
            else self.hidden_size // self.num_attention_heads,
            base=10000,
            precision=torch.half,
            learnable=False,
        )

        self.scale_mask_softmax = None

        if hidden_size_per_attention_head is None:
            self.hidden_size_per_attention_head = hidden_size // num_attention_heads
        else:
            self.hidden_size_per_attention_head = hidden_size_per_attention_head

        self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head

        # Strided linear layer.
        self.query_key_value = init_method(
            torch.nn.Linear,
            hidden_size,
            3 * self.inner_hidden_size,
            bias=bias,
            dtype=params_dtype,
        )

        self.dense = init_method(
            torch.nn.Linear,
            self.inner_hidden_size,
            hidden_size,
            bias=bias,
            dtype=params_dtype,
        )

    @staticmethod
    def attention_mask_func(attention_scores, attention_mask):
        attention_scores.masked_fill_(attention_mask, -10000.0)
        return attention_scores

    def split_tensor_along_last_dim(self, tensor, num_partitions,
                                    contiguous_split_chunks=False):

        # Get the size and dimension.
        last_dim = tensor.dim() - 1
        last_dim_size = tensor.size()[last_dim] // num_partitions
        # Split.
        tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
        # Note: torch.split does not create contiguous tensors by default.
        if contiguous_split_chunks:
            return tuple(chunk.contiguous() for chunk in tensor_list)

        return tensor_list

    def forward(
            self,
            hidden_states: torch.Tensor,
            position_ids,
            attention_mask: torch.Tensor,
            layer_id,
            layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
            use_cache: bool = False,
            output_attentions: bool = False,
    ):
        # [seq_len, batch, 3 * hidden_size]
        mixed_raw_layer = self.query_key_value(hidden_states)

        # [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
        new_tensor_shape = mixed_raw_layer.size()[:-1] + (
            self.num_attention_heads_per_partition,
            3 * self.hidden_size_per_attention_head,
        )
        mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)

        (query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)

        if self.position_encoding_2d:
            q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
            k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
            cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
            position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
                position_ids[:, 1, :].transpose(0, 1).contiguous()
            q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
            q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
            query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
            key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
        else:
            position_ids = position_ids.transpose(0, 1)
            cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
            # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
            query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)

        # [seq_len, batch, hidden_size]
        context_layer, present, attention_probs = attention_fn(
            self=self,
            query_layer=query_layer,
            key_layer=key_layer,
            value_layer=value_layer,
            attention_mask=attention_mask,
            hidden_size_per_partition=self.hidden_size_per_partition,
            layer_id=layer_id,
            layer_past=layer_past,
            use_cache=use_cache
        )

        output = self.dense(context_layer)

        outputs = (output, present)

        if output_attentions:
            outputs += (attention_probs,)

        return outputs  # output, present, attention_probs
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129

六、ChatGLM的GLMBlock

GLMBlock是基于Transformer模型的一种变体,主要包含以下几个部分:
1.Layer Norm: 这是一种常见的归一化方法,主要用于神经网络中的深度学习。它将每个样本在特征维度上进行归一化,使得输出在每个特征维度上都有均值为0和方差为1。这种方法可以加速模型收敛速度,并有助于解决梯度消失和梯度爆炸问题。
2.Self Attention: 自注意力机制是Transformer模型的核心组成部分。给定一个输入序列,自注意力机制能够根据序列中每个元素与其他元素之间的关系,计算出一个权重向量,并用这个权重向量对输入序列进行加权平均。这样可以让模型更好地捕获序列中长距离依赖关系。 在GLMBlock中,Self Attention后面接了一个残差连接(Residual Connection)。残差连接可以让信息直接从前层传递到后层,在深层网络中有助于解决梯度消失问题。
3.Layer Normalization: GLMBlock在Self Attention和GLU之间又添加了一次Layer Norm操作。
4.GLU: GLU是一种非线性激活函数,主要由两部分组成:线性变换和门控机制。线性变换负责提取输入特征,而门控机制则负责控制信息流动。通过这种方式,GLU能够更好地处理复杂任务。 同样地,在GLU后面也接了一个残差连接。
在这里插入图片描述

class GLMBlock(torch.nn.Module):
    def __init__(
            self,
            hidden_size,
            num_attention_heads,
            layernorm_epsilon,
            layer_id,
            inner_hidden_size=None,
            hidden_size_per_attention_head=None,
            layernorm=LayerNorm,
            use_bias=True,
            params_dtype=torch.float,
            num_layers=28,
            position_encoding_2d=True,
            empty_init=True
    ):
        super(GLMBlock, self).__init__()

        self.layer_id = layer_id

        # LayerNorm层
        self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
        # 是否使用2维位置编码
        self.position_encoding_2d = position_encoding_2d
        # 自注意力层
        self.attention = SelfAttention(
            hidden_size,
            num_attention_heads,
            layer_id,
            hidden_size_per_attention_head=hidden_size_per_attention_head,
            bias=use_bias,
            params_dtype=params_dtype,
            position_encoding_2d=self.position_encoding_2d,
            empty_init=empty_init
        )

        # Post Layer Norm层
        self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
        self.num_layers = num_layers

        # mlp层
        self.mlp = GLU(
            hidden_size,
            inner_hidden_size=inner_hidden_size,
            bias=use_bias,
            layer_id=layer_id,
            params_dtype=params_dtype,
            empty_init=empty_init
        )

    def forward(
            self,
            hidden_states: torch.Tensor,
            position_ids,
            attention_mask: torch.Tensor,
            layer_id,
            layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
            use_cache: bool = False,
            output_attentions: bool = False,
    ):

        # 对输入进行Layer Norm
        # [seq_len, batch, hidden_size]
        attention_input = self.input_layernorm(hidden_states)
        # 自注意力
        attention_outputs = self.attention(
            attention_input,
            position_ids,
            attention_mask=attention_mask,
            layer_id=layer_id,
            layer_past=layer_past,
            use_cache=use_cache,
            output_attentions=output_attentions
        )
        attention_output = attention_outputs[0]
        outputs = attention_outputs[1:]
        # 自注意力的输出和输入残差连接
        alpha = (2 * self.num_layers) ** 0.5
        hidden_states = attention_input * alpha + attention_output
        # Layer Norm
        mlp_input = self.post_attention_layernorm(hidden_states)
        # 全连接层投影
        mlp_output = self.mlp(mlp_input)
        # MLP层的输出和输入残差连接
        output = mlp_input * alpha + mlp_output
        
        if use_cache:
            outputs = (output,) + outputs
        else:
            outputs = (output,) + outputs[1:]

        return outputs
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92

七、ChatGLM的预训练模型

ChatGLM的预训练模型目的是获取注意力mask和position ids,下面具体介绍ChatGLMPreTrainedModel中的get_masks函数实现与获取position_ids函数:

def get_masks(self, input_ids, device):
    batch_size, seq_length = input_ids.shape
    # context_lengths记录了batch中每个样本的真实长度
    context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
    # 生成causal mask,即下三角以及对角线为1,上三角为0
    attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
    attention_mask.tril_()
    # 将前缀部分的注意力改为双向
    for i, context_length in enumerate(context_lengths):
        attention_mask[i, :, :context_length] = 1
    attention_mask.unsqueeze_(1)
    attention_mask = (attention_mask < 0.5).bool()
        
    return attention_mask

def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):

    batch_size, seq_length = input_ids.shape
    if use_gmasks is None:
        use_gmasks = [False] * batch_size
    # context_lengths:未被padding前,batch中各个样本的长度
    context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
    # 2维位置编码
    if self.position_encoding_2d:
        # [0,1,2,...,seq_length-1]
        position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
        # 将原始输入后所有位置的postion id都设置为[Mask]或者[gMask]的位置id
        # (该操作见注意力层对位置编码的介绍)
        for i, context_length in enumerate(context_lengths):
            position_ids[i, context_length:] = mask_positions[i]
        # 原始输入的位置编码全部设置为0,待生成的位置添加顺序的位置id
        # 例如:[0,0,0,0,1,2,3,4,5]
        block_position_ids = [torch.cat((
            torch.zeros(context_length, dtype=torch.long, device=device),
            torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
        )) for context_length in context_lengths]
        block_position_ids = torch.stack(block_position_ids, dim=0)
        # 将postion_ids和block_position_ids堆叠在一起,用于后续的参数传入;
        # 在注意力层中,还有将这个position_ids拆分为两部分
        position_ids = torch.stack((position_ids, block_position_ids), dim=1)
    else:
        position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
        for i, context_length in enumerate(context_lengths):
            if not use_gmasks[i]:
                position_ids[i, context_length:] = mask_positions[i]

    return position_ids
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

八、最终模型:ChatGLMModel

ChatGLMModel是将以上各种组件与模型块集成加载后的组合模型,代码如下:

class ChatGLMModel(ChatGLMPreTrainedModel):
    def __init__(self, config: ChatGLMConfig, empty_init=True):
        super().__init__(config)
        if empty_init:
            init_method = skip_init
        else:
            init_method = default_init
   
        self.max_sequence_length = config.max_sequence_length
        self.hidden_size = config.hidden_size
        self.params_dtype = torch.half
        self.num_attention_heads = config.num_attention_heads
        self.vocab_size = config.vocab_size
        self.num_layers = config.num_layers
        self.layernorm_epsilon = config.layernorm_epsilon
        self.inner_hidden_size = config.inner_hidden_size
        self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
        self.position_encoding_2d = config.position_encoding_2d
        self.pre_seq_len = config.pre_seq_len
        self.prefix_projection = config.prefix_projection
        # 初始化embedding层
        self.word_embeddings = init_method(
            torch.nn.Embedding,
            num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
            dtype=self.params_dtype
        )
        self.gradient_checkpointing = False

        def get_layer(layer_id):
            return GLMBlock(
                self.hidden_size,
                self.num_attention_heads,
                self.layernorm_epsilon,
                layer_id,
                inner_hidden_size=self.inner_hidden_size,
                hidden_size_per_attention_head=self.hidden_size_per_attention_head,
                layernorm=LayerNorm,
                use_bias=True,
                params_dtype=self.params_dtype,
                position_encoding_2d=self.position_encoding_2d,
                empty_init=empty_init
            )
        # 堆叠GLMBlock
        self.layers = torch.nn.ModuleList(
            [get_layer(layer_id) for layer_id in range(self.num_layers)]
        )

        # 最后的Layer Norm层
        self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)

    def get_input_embeddings(self):
        return self.word_embeddings

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.word_embeddings = new_embeddings
    @add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPastAndCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
            inputs_embeds: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
      
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape[:2]
        elif inputs_embeds is not None:
            batch_size, seq_length = inputs_embeds.shape[:2]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")
        ### (结束)一些输入输出和参数设置,可以忽略
        
        # embedding层
        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.layers))
            # 获得注意力mask,该功能继承自ChatGLMPreTrainedModel
            if attention_mask is None:
                attention_mask = self.get_masks(
                    input_ids,
                    device=input_ids.device
                )
                
            if position_ids is None:
                MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
                seqs = input_ids.tolist()
                # 记录input_ids中是否使用了mask以及mask的位置
                # mask_positions记录每个样本中mask的位置
                # use_gmasks记录是否使用了gMask
                mask_positions, use_gmasks = [], []
                for seq in seqs:
                    mask_token = gMASK if gMASK in seq else MASK
                    use_gmask = mask_token == gMASK
                    mask_positions.append(seq.index(mask_token))
                    use_gmasks.append(use_gmask)
                 # 获得position_ids,该功能继承自ChatGLMPreTrainedModel
                position_ids = self.get_position_ids(
                    input_ids,
                    mask_positions=mask_positions,
                    device=input_ids.device,
                    use_gmasks=use_gmasks
                )

        # [seq_len, batch, hidden_size]
        hidden_states = inputs_embeds.transpose(0, 1)
        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        if attention_mask is None:
            attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
        else:
            attention_mask = attention_mask.to(hidden_states.device)
            
        # 模型的前向传播
        for i, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)
            layer_past = past_key_values[i]

            if self.gradient_checkpointing and self.training:
                layer_ret = torch.utils.checkpoint.checkpoint(
                    layer,
                    hidden_states,
                    position_ids,
                    attention_mask,
                    torch.tensor(i),
                    layer_past,
                    use_cache,
                    output_attentions
                )
            else:
                layer_ret = layer(
                    hidden_states,
                    position_ids=position_ids,
                    attention_mask=attention_mask,
                    layer_id=torch.tensor(i),
                    layer_past=layer_past,
                    use_cache=use_cache,
                    output_attentions=output_attentions
                )

            hidden_states = layer_ret[0]

            if use_cache:
                presents = presents + (layer_ret[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)

        # 最终的Layer Norm
        hidden_states = self.final_layernorm(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192

到此为止,我已经详细介绍了ChaGLM的详细源码与原理介绍,相信大家对ChaGLM的模型架构有了大致的了解了。更多细节内容请持续关注“微学AI”。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/137239
推荐阅读
相关标签
  

闽ICP备14008679号