赞
踩
先来看一个极简的模型。
y
i
j
t
∼
N
(
∑
s
=
1
r
u
i
s
v
j
s
x
t
s
,
τ
−
1
)
y_{ijt} \sim \mathcal{N}(\sum_{s=1}^r u_{is} v_{js} x_{ts},\tau^{-1})
yijt∼N(∑s=1ruisvjsxts,τ−1)
就模型参数
u
i
u_i
ui 而言,似然来自
Y
:
j
t
\mathcal{Y}_{:jt}
Y:jt 中被观测到的元素:
L
(
Y
:
j
t
∣
u
i
,
V
,
X
,
τ
)
\mathcal{L} (\mathcal{Y}_{:jt} | u_i,V,X,\tau)
L(Y:jt∣ui,V,X,τ)
∝
∏
:
,
j
,
t
e
−
1
2
τ
(
y
i
j
t
−
u
i
T
w
j
t
)
2
\Large \propto \prod_{:,j,t} e^{- \frac{1}{2} \tau(y_{ijt} - u_i^Tw_{jt})^2}
∝∏:,j,te−21τ(yijt−uiTwjt)2
是很多高斯分布的乘积。其中
u
i
T
w
j
t
=
∑
s
=
1
r
u
i
s
v
j
s
x
t
s
,
w
j
t
=
(
v
j
⊛
x
t
)
,
⊛
u_i^T w_{jt} = \sum_{s=1}^r u_{is} v_{js} x_{ts} ,w_{jt} = (v_{j} \circledast x_t) ,\circledast
uiTwjt=∑s=1ruisvjsxts,wjt=(vj⊛xt),⊛ 代表点乘。
∝
∏
:
,
j
,
t
e
−
1
2
τ
(
y
i
j
t
−
u
i
T
w
j
t
)
(
y
i
j
t
−
u
i
T
w
j
t
)
T
\Large \propto \prod_{:,j,t} e^{- \frac{1}{2} \tau (y_{ijt} - u_i^Tw_{jt}) (y_{ijt} - u_i^Tw_{jt})^T}
∝∏:,j,te−21τ(yijt−uiTwjt)(yijt−uiTwjt)T
∝
e
−
1
2
u
i
T
(
τ
∑
:
,
j
,
t
w
j
t
w
j
t
T
)
u
i
+
1
2
u
i
T
(
τ
∑
:
,
j
,
t
y
i
j
t
w
j
t
)
\Large \propto e^{- \frac{1}{2} u_i^T (\tau \sum_{:,j,t} w_{jt} w_{jt}^T) u_i + \frac{1}{2} u_i^T (\tau \sum_{:,j,t} y_{ijt} w_{jt})}
∝e−21uiT(τ∑:,j,twjtwjtT)ui+21uiT(τ∑:,j,tyijtwjt)
可以得到关于
u
i
u_i
ui 的多元正态分布
由于
u
i
∼
N
(
0
,
[
d
i
a
g
(
λ
)
]
−
1
)
u_i \sim \mathcal{N}(0,[diag(\lambda)]^{-1})
ui∼N(0,[diag(λ)]−1)
p
(
u
i
∣
λ
)
∝
e
−
1
2
u
i
T
d
i
a
g
(
λ
)
u
i
\Large p(u_i | \lambda) \propto e^{-\frac{1}{2} u_i^T diag(\lambda) u_i}
p(ui∣λ)∝e−21uiTdiag(λ)ui
根据贝叶斯准则
p
o
s
t
e
r
i
o
r
∝
p
r
i
o
r
×
l
i
k
e
h
o
o
d
posterior \propto prior \times likehood
posterior∝prior×likehood
p
(
u
i
∣
V
,
X
,
τ
,
Y
:
j
,
t
,
λ
)
∝
p
(
u
i
∣
λ
)
×
L
(
Y
:
j
,
t
∣
u
i
,
V
,
X
,
τ
)
p(u_i | V,X,\tau,\mathcal{Y}_{:j,t},\lambda) \propto p(u_i | \lambda) \times \mathcal{L}(\mathcal{Y}_{:j,t} |u_i,V,X,\tau)
p(ui∣V,X,τ,Y:j,t,λ)∝p(ui∣λ)×L(Y:j,t∣ui,V,X,τ)
∝
e
−
1
2
u
i
T
d
i
a
g
(
λ
)
u
i
e
−
1
2
u
i
T
(
τ
∑
:
,
j
,
t
w
j
t
w
j
t
T
)
u
i
+
1
2
u
i
T
(
τ
∑
:
,
j
,
t
y
i
j
t
w
j
t
)
\Large \propto e^{-\frac{1}{2} u_i^T diag(\lambda) u_i} e^{- \frac{1}{2} u_i^T (\tau \sum_{:,j,t} w_{jt} w_{jt}^T) u_i + \frac{1}{2} u_i^T (\tau \sum_{:,j,t} y_{ijt} w_{jt})}
∝e−21uiTdiag(λ)uie−21uiT(τ∑:,j,twjtwjtT)ui+21uiT(τ∑:,j,tyijtwjt)
∝
e
−
1
2
u
i
T
[
d
i
a
g
(
λ
)
+
τ
∑
:
,
j
,
t
w
j
t
w
j
t
T
]
u
i
e
1
2
u
i
T
(
τ
∑
:
,
j
,
t
y
i
j
t
w
j
t
)
\Large \propto e^{-\frac{1}{2} u_i^T [diag(\lambda) + \tau \sum_{:,j,t} w_{jt} w_{jt}^T] u_i} e^{\frac{1}{2} u_i^T (\tau \sum_{:,j,t} y_{ijt} w_{jt})}
∝e−21uiT[diag(λ)+τ∑:,j,twjtwjtT]uie21uiT(τ∑:,j,tyijtwjt)
令
Λ
~
u
=
d
i
a
g
(
λ
)
+
τ
∑
:
,
j
,
t
w
j
t
w
j
t
T
\widetilde{\Lambda}_u = diag(\lambda) + \tau \sum_{:,j,t} w_{jt} w_{jt}^T
Λ
u=diag(λ)+τ∑:,j,twjtwjtT
∝
e
−
1
2
u
i
T
Λ
~
u
u
i
+
1
2
u
i
T
(
τ
∑
:
,
j
,
t
y
i
j
t
w
j
t
)
\Large \propto e^{-\frac{1}{2} u_i^T \widetilde{\Lambda}_u u_i + \frac{1}{2} u_i^T (\tau \sum_{:,j,t} y_{ijt} w_{jt})}
∝e−21uiTΛ
uui+21uiT(τ∑:,j,tyijtwjt)
∝
e
−
1
2
(
u
i
−
u
~
u
)
T
Λ
~
u
(
u
i
−
u
~
u
)
\Large \propto e^{-\frac{1}{2} (u_i - \widetilde{u}_u)^T \widetilde{\Lambda}_u (u_i - \widetilde{u}_u)}
∝e−21(ui−u
u)TΛ
u(ui−u
u)
其中
u
~
u
=
τ
Λ
~
u
−
1
∑
:
,
j
,
t
y
i
j
t
w
j
t
\widetilde{u}_u = \tau \widetilde{\Lambda}_u^{-1} \sum_{:,j,t} y_{ijt} w_{jt}
u
u=τΛ
u−1∑:,j,tyijtwjt
即:
u
i
∼
N
(
u
~
u
,
Λ
~
u
−
1
)
u_i \sim \mathcal{N}(\widetilde{u}_u,\widetilde{\Lambda}_u^{-1})
ui∼N(u
u,Λ
u−1)
与
u
i
u_i
ui 的推导类似
Λ
~
v
=
d
i
a
g
(
λ
)
+
τ
∑
i
,
:
,
t
w
i
t
w
i
t
T
\widetilde{\Lambda}_v = diag(\lambda) + \tau \sum_{i,:,t} w_{it} w_{it}^T
Λ
v=diag(λ)+τ∑i,:,twitwitT
其中
v
~
v
=
τ
Λ
~
v
−
1
∑
i
,
:
,
t
y
i
j
t
w
i
t
\widetilde{v}_v = \tau \widetilde{\Lambda}_v^{-1} \sum_{i,:,t} y_{ijt} w_{it}
v
v=τΛ
v−1∑i,:,tyijtwit
即:
v
j
∼
N
(
v
~
v
,
Λ
~
v
−
1
)
v_j \sim \mathcal{N}(\widetilde{v}_v,\widetilde{\Lambda}_v^{-1})
vj∼N(v
v,Λ
v−1)
与
u
i
u_i
ui 的推导类似
Λ
~
x
=
d
i
a
g
(
λ
)
+
τ
∑
i
,
j
,
:
w
i
j
w
i
j
T
\widetilde{\Lambda}_x = diag(\lambda) + \tau \sum_{i,j,:} w_{ij} w_{ij}^T
Λ
x=diag(λ)+τ∑i,j,:wijwijT
其中
x
~
x
=
τ
Λ
~
x
−
1
∑
i
,
j
,
:
y
i
j
t
w
i
j
\widetilde{x}_x = \tau \widetilde{\Lambda}_x^{-1} \sum_{i,j,:} y_{ijt} w_{ij}
x
x=τΛ
x−1∑i,j,:yijtwij
即:
x
t
∼
N
(
x
~
x
,
Λ
~
x
−
1
)
x_t \sim \mathcal{N}(\widetilde{x}_x,\widetilde{\Lambda}_x^{-1})
xt∼N(x
x,Λ
x−1)
已知先验
p
(
τ
∣
α
0
,
β
0
)
=
p
(
τ
∣
α
0
,
β
0
)
=
(
β
0
)
α
0
Γ
(
α
0
)
(
τ
)
α
0
−
1
e
−
β
0
τ
\Large p(\tau | \alpha_0,\beta_0) = p(\tau | \alpha_0,\beta_0) = \frac{(\beta_0)^{\alpha_0}}{\Gamma(\alpha_0)} (\tau)^{\alpha_0-1} e^{-\beta_0\tau}
p(τ∣α0,β0)=p(τ∣α0,β0)=Γ(α0)(β0)α0(τ)α0−1e−β0τ
就模型参数
τ
\tau
τ 而言,似然主要来自于
Y
\mathcal{Y}
Y
L
(
Y
∣
τ
,
U
,
V
,
X
)
∝
∏
i
=
1
m
∏
j
=
1
n
∏
t
=
1
f
τ
1
/
2
e
−
1
2
τ
(
y
i
j
t
−
∑
s
=
1
r
u
i
s
v
j
s
x
t
s
)
2
\Large \mathcal{L}(\mathcal{Y} | \tau,U,V,X) \propto \prod_{i=1}^m \prod_{j=1}^n \prod_{t=1}^f \tau^{1/2} e^{-\frac{1}{2} \tau (y_{ijt} - \sum_{s=1}^r u_{is} v_{js} x_{ts})^2 }
L(Y∣τ,U,V,X)∝∏i=1m∏j=1n∏t=1fτ1/2e−21τ(yijt−∑s=1ruisvjsxts)2
∝
τ
1
2
(
m
+
n
+
f
)
e
−
1
2
τ
∑
i
,
j
,
t
∈
Ω
(
y
i
j
t
−
∑
s
=
1
r
u
i
s
v
j
s
x
t
s
)
2
\Large \propto \tau^{\frac{1}{2}(m + n + f)} e^{-\frac{1}{2} \tau \sum_{i,j,t \in \Omega}(y_{ijt} - \sum_{s=1}^r u_{is} v_{js} x_{ts})^2 }
∝τ21(m+n+f)e−21τ∑i,j,t∈Ω(yijt−∑s=1ruisvjsxts)2
所以:
p
(
τ
∣
−
)
∝
L
(
Y
∣
τ
,
U
,
V
,
X
)
×
p
(
τ
∣
α
0
,
β
0
)
\large p(\tau|-) \propto \mathcal{L}(\mathcal{Y} | \tau,U,V,X) \times p(\tau | \alpha_0,\beta_0)
p(τ∣−)∝L(Y∣τ,U,V,X)×p(τ∣α0,β0)
∝
τ
1
2
(
m
+
n
+
f
)
e
−
1
2
τ
∑
i
,
j
,
t
∈
Ω
(
y
i
j
t
−
∑
s
=
1
r
u
i
s
v
j
s
x
t
s
)
2
(
τ
)
α
0
−
1
e
−
β
0
τ
\Large \propto \tau^{\frac{1}{2}(m + n + f)} e^{-\frac{1}{2} \tau \sum_{i,j,t \in \Omega}(y_{ijt} - \sum_{s=1}^r u_{is} v_{js} x_{ts})^2 } (\tau)^{\alpha_0-1} e^{-\beta_0\tau}
∝τ21(m+n+f)e−21τ∑i,j,t∈Ω(yijt−∑s=1ruisvjsxts)2(τ)α0−1e−β0τ
∝
τ
1
2
(
m
+
n
+
f
)
+
α
0
−
1
e
−
1
2
τ
[
β
0
+
∑
i
,
j
,
t
∈
Ω
(
y
i
j
t
−
∑
s
=
1
r
u
i
s
v
j
s
x
t
s
)
2
]
\Large \propto \tau^{\frac{1}{2}(m + n + f) + \alpha_0 -1} e^{-\frac{1}{2} \tau \left[\beta_0 + \sum_{i,j,t \in \Omega}(y_{ijt} - \sum_{s=1}^r u_{is} v_{js} x_{ts})^2 \right] }
∝τ21(m+n+f)+α0−1e−21τ[β0+∑i,j,t∈Ω(yijt−∑s=1ruisvjsxts)2]
在张量分解的贝叶斯网络中,可以通过
τ
∼
G
a
m
m
a
(
α
~
,
β
~
)
\tau \sim Gamma(\widetilde{\alpha},\widetilde{\beta})
τ∼Gamma(α
,β
) 对参数
τ
\tau
τ 进行采样更新,其中:
α
~
=
a
0
+
1
2
∑
i
,
j
,
t
∈
Ω
1
(
y
i
j
t
≠
0
)
\widetilde{\alpha} = a_0 + \frac{1}{2} \sum_{i,j,t \in \Omega} 1 (y_{ijt} \neq 0)
α
=a0+21∑i,j,t∈Ω1(yijt=0)
β
~
=
β
0
+
1
2
∑
i
,
j
,
t
∈
Ω
(
y
i
j
t
−
∑
s
=
1
r
u
i
s
v
j
s
x
t
s
)
2
\widetilde{\beta} = \beta_0 + \frac{1}{2} \sum_{i,j,t \in \Omega} (y_{ijt} - \sum_{s=1}^r u_{is} v_{js} x_{ts})^2
β
=β0+21∑i,j,t∈Ω(yijt−∑s=1ruisvjsxts)2
已知先验分布
p
(
λ
s
∣
α
0
,
β
0
)
=
p
(
λ
s
∣
α
0
,
β
0
)
=
(
β
0
)
α
0
Γ
(
α
0
)
(
λ
s
)
α
0
−
1
e
−
β
0
λ
s
\Large p(\lambda_s | \alpha_0,\beta_0) = p(\lambda_s | \alpha_0,\beta_0) = \frac{(\beta_0)^{\alpha_0}}{\Gamma(\alpha_0)} (\lambda_s)^{\alpha_0-1} e^{-\beta_0 \lambda_s}
p(λs∣α0,β0)=p(λs∣α0,β0)=Γ(α0)(β0)α0(λs)α0−1e−β0λs
就模型参数
λ
s
\lambda_s
λs 而言,其似然主要来自于
U
,
V
,
X
U,V,X
U,V,X
尽管超参数
λ
\lambda
λ 与参数
τ
\tau
τ 都被假设服从伽马分布,但不同的是,参数
λ
\lambda
λ 作为一个向量,对应多元正态分布中的协方差矩阵,在这里,不妨以
u
i
u_i
ui 为例,先写一下多元正态分布的形式
p
(
u
i
∣
λ
)
=
∣
d
i
a
g
(
λ
)
∣
1
/
2
(
2
π
)
r
/
2
e
−
1
2
u
i
T
d
i
a
g
(
λ
)
u
i
\Large p(u_i | \lambda) = \frac{|diag(\lambda)|^{1/2}}{(2\pi)^{r/2}} e^{-\frac{1}{2} u_i^T diag(\lambda) u_i}
p(ui∣λ)=(2π)r/2∣diag(λ)∣1/2e−21uiTdiag(λ)ui
从这条公式中,对于任意
λ
s
s
=
1
,
2
,
…
,
r
\lambda_{s} ~ s=1,2,\dots,r
λs s=1,2,…,r
p
(
u
i
s
∣
λ
s
)
∝
(
λ
s
)
1
/
2
e
−
1
2
λ
s
u
i
s
2
\Large p(u_{is}| \lambda_{s}) \propto (\lambda_{s})^{1/2} e^{-\frac{1}{2} \lambda_{s} u_{is}^2}
p(uis∣λs)∝(λs)1/2e−21λsuis2
所以
L
(
U
,
V
,
X
∣
λ
s
)
∝
∏
i
=
1
m
(
λ
s
)
1
/
2
e
−
1
2
λ
s
u
i
s
2
∏
j
=
1
n
(
λ
s
)
1
/
2
e
−
1
2
λ
s
v
j
s
2
∏
t
=
1
f
(
λ
s
)
1
/
2
e
−
1
2
λ
s
x
t
s
2
\Large \mathcal{L}(U,V,X | \lambda_s) \propto \prod_{i=1}^m (\lambda_{s})^{1/2} e^{-\frac{1}{2} \lambda_{s} u_{is}^2} \prod_{j=1}^n (\lambda_{s})^{1/2} e^{-\frac{1}{2} \lambda_{s} v_{js}^2} \prod_{t=1}^f (\lambda_{s})^{1/2} e^{-\frac{1}{2} \lambda_{s} x_{ts}^2}
L(U,V,X∣λs)∝∏i=1m(λs)1/2e−21λsuis2∏j=1n(λs)1/2e−21λsvjs2∏t=1f(λs)1/2e−21λsxts2
∝
(
λ
s
)
(
m
+
n
+
f
)
e
−
1
2
λ
s
[
∑
i
=
1
m
u
i
s
2
+
∑
j
=
1
n
v
j
s
2
+
∑
t
=
1
f
x
t
s
2
]
\Large \propto (\lambda_s)^{(m+n+f)} e^{-\frac{1}{2} \lambda_s \left[ \sum_{i=1}^m u_{is}^2 + \sum_{j=1}^n v_{js}^2 + \sum_{t=1}^f x_{ts}^2 \right]}
∝(λs)(m+n+f)e−21λs[∑i=1muis2+∑j=1nvjs2+∑t=1fxts2]
所以
p
(
λ
s
∣
U
,
V
,
X
,
α
0
,
β
0
)
=
p
(
λ
s
∣
α
0
,
β
0
)
×
L
(
U
,
V
,
X
∣
λ
s
)
\large p(\lambda_s | U,V,X,\alpha_0,\beta_0) = p(\lambda_s | \alpha_0,\beta_0) \times \mathcal{L}(U,V,X | \lambda_s)
p(λs∣U,V,X,α0,β0)=p(λs∣α0,β0)×L(U,V,X∣λs)
∝
(
λ
s
)
(
m
+
n
+
f
)
e
−
1
2
λ
s
[
∑
i
=
1
m
u
i
s
2
+
∑
j
=
1
n
v
j
s
2
+
∑
t
=
1
f
x
t
s
2
]
(
λ
s
)
α
0
−
1
e
−
β
0
λ
s
\Large \propto (\lambda_s)^{(m+n+f)} e^{-\frac{1}{2} \lambda_s \left[ \sum_{i=1}^m u_{is}^2 + \sum_{j=1}^n v_{js}^2 + \sum_{t=1}^f x_{ts}^2 \right]} (\lambda_s)^{\alpha_0-1} e^{-\beta_0 \lambda_s}
∝(λs)(m+n+f)e−21λs[∑i=1muis2+∑j=1nvjs2+∑t=1fxts2](λs)α0−1e−β0λs
∝
(
λ
s
)
(
m
+
n
+
f
)
+
α
0
−
1
e
−
λ
s
[
1
2
(
∑
i
=
1
m
u
i
s
2
+
∑
j
=
1
n
v
j
s
2
+
∑
t
=
1
f
x
t
s
2
)
+
β
0
]
\Large \propto (\lambda_s)^{(m+n+f) + \alpha_0-1} e^{- \lambda_s \left[\frac{1}{2} (\sum_{i=1}^m u_{is}^2 + \sum_{j=1}^n v_{js}^2 + \sum_{t=1}^f x_{ts}^2 )+ \beta_0 \right]}
∝(λs)(m+n+f)+α0−1e−λs[21(∑i=1muis2+∑j=1nvjs2+∑t=1fxts2)+β0]
超参数
λ
s
∼
G
a
m
m
a
(
α
~
,
β
~
)
,
s
=
1
,
2
,
…
,
r
\lambda_s \sim Gamma(\widetilde{\alpha},\widetilde{\beta}),s=1,2,\dots,r
λs∼Gamma(α
,β
),s=1,2,…,r
α
~
=
α
0
+
1
2
(
m
+
n
+
f
)
\widetilde{\alpha} = \alpha_0 + \frac{1}{2} (m+n+f)
α
=α0+21(m+n+f)
β
~
=
β
0
+
1
2
(
∑
i
=
1
m
u
i
s
2
+
∑
j
=
1
n
v
j
s
2
+
∑
t
=
1
f
x
t
s
2
)
\widetilde{\beta} = \beta_0 + \frac{1}{2} (\sum_{i=1}^m u_{is}^2 + \sum_{j=1}^n v_{js}^2 + \sum_{t=1}^f x_{ts}^2)
β
=β0+21(∑i=1muis2+∑j=1nvjs2+∑t=1fxts2)
代码请见GitHub,如有帮助不要吝啬star哦~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。