赞
踩
AR
Time Series Analysis
author:zoxiii
【参考文献】王燕. 应用时间序列分析-第5版[M]. 中国人民大学出版社, 2019.
{
x
t
=
ϕ
0
+
ϕ
1
x
t
−
1
+
.
.
.
+
ϕ
p
x
t
−
p
+
ε
t
ϕ
p
≠
0
E
(
ε
t
)
=
0
,
V
a
r
(
ε
t
)
=
σ
ε
2
,
E
(
ε
t
ε
s
)
=
0
,
s
≠
t
E
(
x
s
ε
t
)
=
0
,
∀
s
<
t
x t = ϕ 1 x t − 1 + . . . + ϕ p x t − p + ε t x_t=\phi_1x_{t-1}+...+\phi_px_{t-p}+\varepsilon_t xt=ϕ1xt−1+...+ϕpxt−p+εt
x
t
=
ϕ
1
x
t
−
1
+
.
.
.
+
ϕ
p
x
t
−
p
+
ε
t
=
ϕ
1
B
x
t
+
.
.
.
+
ϕ
p
B
p
x
t
+
ε
t
=
Φ
(
B
)
ε
t
x_t=\phi_1x_{t-1}+...+\phi_px_{t-p}+\varepsilon_t \\ ~=\phi_1Bx_t+...+\phi_pB^px_t+\varepsilon_t\\ =\Phi(B)\varepsilon_t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
xt=ϕ1xt−1+...+ϕpxt−p+εt =ϕ1Bxt+...+ϕpBpxt+εt=Φ(B)εt
得到q阶自回归系数多项式:
Φ
(
B
)
=
1
−
ϕ
1
B
−
ϕ
2
B
2
−
.
.
.
−
ϕ
p
B
p
\Phi(B)=1-\phi_1B-\phi_2B^2-...-\phi_pB^p
Φ(B)=1−ϕ1B−ϕ2B2−...−ϕpBp
μ = ϕ 0 1 − ϕ 1 − . . . − ϕ p \mu=\frac{\phi_0}{1-\phi_1-...-\phi_p} μ=1−ϕ1−...−ϕpϕ0
{
G
0
=
1
G
j
=
∑
k
=
1
j
ϕ
k
′
G
j
−
k
\left \{
其中:
ϕ
k
′
=
{
ϕ
k
,
k
≤
p
0
,
k
>
p
\phi_k' =
x t = ε t Φ ( B ) = G ( B ) ε t x_t=\frac{\varepsilon_t}{\Phi\left(B\right)}=G(B)\varepsilon_t xt=Φ(B)εt=G(B)εt
Φ ( B ) G ( B ) ε t = ε t \Phi\left(B\right)G\left(B\right)\varepsilon_t=\varepsilon_t Φ(B)G(B)εt=εt
( 1 − ∑ k = 1 p ( ϕ k B k ) ) ( ∑ j = 0 ∞ ( G j B j ) ) ε t = ε t \left(1-\sum_{k=1}^{p}\left(\phi_kB^k\right)\right)\left(\sum_{j=0}^{\infty}\left(G_jB^j\right)\right)\varepsilon_t=\varepsilon_t (1−k=1∑p(ϕkBk))(j=0∑∞(GjBj))εt=εt
( ∑ j = 0 ∞ G j B j − ∑ k = 1 p ∑ j = 0 ∞ ϕ k B k G j B j ) ε t = ε t \left(\sum_{j=0}^{\infty}{G_jB^j}-\sum_{k=1}^{p}\sum_{j=0}^{\infty}{\phi_kB^kG_jB^j}\right)\varepsilon_t=\varepsilon_t (j=0∑∞GjBj−k=1∑pj=0∑∞ϕkBkGjBj)εt=εt
( G 0 + ∑ j = 1 ∞ ( G j − ∑ k = 1 j ϕ k ′ G j − k ) B j ) ε t = ε t \left(G_0+\sum_{j=1}^{\infty}\left(G_j-\sum_{k=1}^{j}{{\phi_k}^\prime G_{j-k}}\right)B_j\right)\varepsilon_t=\varepsilon_t (G0+j=1∑∞(Gj−k=1∑jϕk′Gj−k)Bj)εt=εt
V
a
r
(
x
t
)
=
∑
j
=
0
∞
G
j
2
V
a
r
(
ε
t
−
j
)
=
∑
j
=
0
∞
G
j
2
σ
ε
2
Var(x_t)=\sum_{j=0}^{\infty}{G_j^2Var(\varepsilon_{t-j})}=\sum_{j=0}^{\infty}{G_j^2\sigma_\varepsilon^2}
Var(xt)=j=0∑∞Gj2Var(εt−j)=j=0∑∞Gj2σε2
或者
V
a
r
(
x
t
)
=
γ
0
Var(x_t)=\gamma_0
Var(xt)=γ0
γ k = ϕ 1 k σ ε 2 1 − ϕ 1 2 \gamma_k=\phi_1^k\frac{\sigma_\varepsilon^2}{1-\phi_1^2} γk=ϕ1k1−ϕ12σε2
{
γ
0
=
1
−
ϕ
2
(
1
+
ϕ
2
)
(
1
−
ϕ
1
−
ϕ
2
)
(
1
+
ϕ
1
−
ϕ
2
)
σ
ε
2
γ
1
=
ϕ
1
1
−
ϕ
2
γ
0
γ
k
=
ϕ
1
γ
k
−
1
+
ϕ
2
γ
k
−
2
\left \{
ρ k = γ k γ 0 = ϕ 1 k \rho_k=\frac{\gamma_k}{\gamma_0}=\phi_1^k ρk=γ0γk=ϕ1k
{
ρ
0
=
γ
0
γ
0
=
1
ρ
1
=
γ
1
γ
0
=
ϕ
1
1
−
ϕ
2
ρ
k
=
γ
k
γ
0
=
ϕ
1
ρ
k
−
1
+
ϕ
2
ρ
k
−
2
\left \{
{
ϕ
11
=
ρ
1
ρ
0
ϕ
k
k
=
0
,
∀
k
>
1
\left \{
{
ϕ
11
=
ρ
1
ρ
0
=
ϕ
1
1
−
ϕ
2
ϕ
22
=
ϕ
2
ϕ
k
k
=
0
,
∀
k
>
2
\left \{
x
t
=
ϕ
1
x
t
−
1
+
ε
t
x_t=\phi_1x_{t-1}+\varepsilon_t
xt=ϕ1xt−1+εt
特征方程
λ
−
ϕ
1
=
0
\lambda-\phi_1=0
λ−ϕ1=0
特征根
λ
=
ϕ
1
\lambda=\phi_1
λ=ϕ1
平稳充要条件:特征根在单位圆内,即
∣
ϕ
1
∣
<
1
|\phi_1|<1
∣ϕ1∣<1
平稳域为
{
ϕ
1
∣
−
1
<
ϕ
1
<
1
}
\{\phi_1|-1<\phi_1<1\}
{ϕ1∣−1<ϕ1<1}
x
t
=
ϕ
1
x
t
−
1
+
ϕ
2
x
t
−
2
+
ε
t
x_t=\phi_1x_{t-1}+\phi_2x_{t-2}+\varepsilon_t
xt=ϕ1xt−1+ϕ2xt−2+εt
特征方程
λ
2
−
ϕ
1
λ
−
ϕ
2
=
0
\lambda^2-\phi_1\lambda-\phi_2=0
λ2−ϕ1λ−ϕ2=0
特征根
λ
1
=
ϕ
1
+
ϕ
1
2
+
4
ϕ
2
2
,
λ
2
=
ϕ
1
−
ϕ
1
2
+
4
ϕ
2
2
\lambda_1=\frac{\phi_1+\sqrt{\phi_1^2+4\phi_2}}{2},\lambda_2=\frac{\phi_1-\sqrt{\phi_1^2+4\phi_2}}{2}
λ1=2ϕ1+ϕ12+4ϕ2
,λ2=2ϕ1−ϕ12+4ϕ2
平稳充要条件:特征根在单位圆内,即
∣
λ
1
∣
<
1
且
∣
λ
2
∣
<
1
|\lambda_1|<1且|\lambda_2|<1
∣λ1∣<1且∣λ2∣<1
平稳域为
{
ϕ
1
,
ϕ
2
∣
∣
ϕ
2
∣
<
1
且
ϕ
2
±
ϕ
1
<
1
}
\{\phi_1,\phi_2||\phi_2|<1且\phi_2\pm\phi_1<1\}
{ϕ1,ϕ2∣∣ϕ2∣<1且ϕ2±ϕ1<1}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。