赞
踩
Eigen是一个C++开源线性代数库,提供快速线性运算和解方程等功能。它是一个纯头文件搭建的库,因此无需链接库文件,即target_link_libraries()。
cmake_minimum_required(VERSION 2.8)
project(useEigen)
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-O3")
# 添加Eigen头文件
include_directories("/usr/include/eigen3")
add_executable(eigenMatrix eigenMatrix.cpp)
#include <iostream> using namespace std; #include <ctime> // Eigen 核心部分 #include <eigen3/Eigen/Core> // 稠密矩阵的代数运算(逆,特征值等) #include <eigen3/Eigen/Dense> using namespace Eigen; #define MATRIX_SIZE 50 /**************************** * 本程序演示了 Eigen 基本类型的使用 ****************************/ int main(int argc, char **argv) { // 1. Eigen的声明 // Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列 // 声明一个2*3的float矩阵 Matrix<float, 2, 3> matrix_23; // 1.1 声明一个向量Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix // 1)Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量 Vector3d v_3d; // 2) Matrix<float, 3, 1> vd_3d; // 1.2 Matrix3d 实质上是 Eigen::Matrix<double, 3, 3> Matrix3d matrix_33 = Matrix3d::Zero(); //初始化为零 // 1.3 // 1)动态大小的矩阵 Matrix<double, Dynamic, Dynamic> matrix_dynamic; // 2)简化 MatrixXd matrix_x; // 2. 对Eigen阵的操作 // 2.1 初始化 matrix_23 << 1, 2, 3, 4, 5, 6; cout << "matrix 2x3 from 1 to 6: \n" << matrix_23 << endl; // 2.2 访问矩阵中的元素 cout << "print matrix 2x3: " << endl; for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) cout << matrix_23(i, j) << "\t"; cout << endl; } // 2.3 矩阵和向量相乘(实际上仍是矩阵和矩阵) v_3d << 3, 2, 1; vd_3d << 4, 5, 6; // 数据类型应该相同,这里采用显式转换xxx.cast<类型>() Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d; // 通过转置 转换成行向量输出 cout << "[1,2,3;4,5,6]*[3,2,1]=" << result.transpose() << endl; Matrix<float, 2, 1> result2 = matrix_23 * vd_3d; cout << "[1,2,3;4,5,6]*[4,5,6]: " << result2.transpose() << endl; // 3. 矩阵运算 // 3.1 四则运算就不演示了,直接用+-*/即可 // 3.2 其他运算 matrix_33 = Matrix3d::Random(); // 随机数矩阵 cout << "random matrix: \n" << matrix_33 << endl; cout << "transpose: \n" << matrix_33.transpose() << endl; // 转置 cout << "sum: " << matrix_33.sum() << endl; // 各元素和 cout << "trace: " << matrix_33.trace() << endl; // 迹 cout << "times 10: \n" << 10 * matrix_33 << endl; // 数乘 cout << "inverse: \n" << matrix_33.inverse() << endl; // 逆 cout << "det: " << matrix_33.determinant() << endl; // 行列式 // 3.3 特征值 // 实对称矩阵可以保证对角化成功 SelfAdjointEigenSolver<Matrix3d> eigen_solver(matrix_33.transpose() * matrix_33); cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl; //特征值 cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl; //特征向量 // 4. 解方程 // 我们求解 A * x = b 这个方程 // N的大小在前边的宏里定义,它由随机数生成 Matrix<double, MATRIX_SIZE, MATRIX_SIZE> A = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE); A = A * A.transpose(); // 保证半正定 Matrix<double, MATRIX_SIZE, 1> b = MatrixXd::Random(MATRIX_SIZE, 1); clock_t time_stt = clock(); // 计时 // 4.1 直接求逆,运算量大 Matrix<double, MATRIX_SIZE, 1> x = A.inverse() * b; cout << "time of normal inverse is " << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl; cout << "x = " << x.transpose() << endl; // 4.2 通常用矩阵分解来求,例如QR分解,速度会快很多 time_stt = clock(); x = A.colPivHouseholderQr().solve(b); cout << "time of Qr decomposition is " << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl; cout << "x = " << x.transpose() << endl; // 4.3 对于正定矩阵,还可以用cholesky分解来解方程 time_stt = clock(); x = A.ldlt().solve(b); cout << "time of ldlt decomposition is " << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl; cout << "x = " << x.transpose() << endl; return 0; }
matrix 2x3 from 1 to 6: 1 2 3 4 5 6 print matrix 2x3: 1 2 3 4 5 6 [1,2,3;4,5,6]*[3,2,1]=10 28 [1,2,3;4,5,6]*[4,5,6]: 32 77 random matrix: 0.680375 0.59688 -0.329554 -0.211234 0.823295 0.536459 0.566198 -0.604897 -0.444451 transpose: 0.680375 -0.211234 0.566198 0.59688 0.823295 -0.604897 -0.329554 0.536459 -0.444451 sum: 1.61307 trace: 1.05922 times 10: 6.80375 5.9688 -3.29554 -2.11234 8.23295 5.36459 5.66198 -6.04897 -4.44451 inverse: -0.198521 2.22739 2.8357 1.00605 -0.555135 -1.41603 -1.62213 3.59308 3.28973 det: 0.208598 Eigen values = 0.0242899 0.992154 1.80558 Eigen vectors = -0.549013 -0.735943 0.396198 0.253452 -0.598296 -0.760134 -0.796459 0.316906 -0.514998 time of normal inverse is 0.076ms x = -55.7896 -298.793 130.113 -388.455 -159.312 160.654 -40.0416 -193.561 155.844 181.144 185.125 -62.7786 19.8333 -30.8772 -200.746 55.8385 -206.604 26.3559 -14.6789 122.719 -221.449 26.233 -318.95 -78.6931 50.1446 87.1986 -194.922 132.319 -171.78 -4.19736 11.876 -171.779 48.3047 84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237 28.9419 111.421 92.1237 -288.248 -23.3478 -275.22 -292.062 -92.698 5.96847 -93.6244 109.734 time of Qr decomposition is 0.048ms x = -55.7896 -298.793 130.113 -388.455 -159.312 160.654 -40.0416 -193.561 155.844 181.144 185.125 -62.7786 19.8333 -30.8772 -200.746 55.8385 -206.604 26.3559 -14.6789 122.719 -221.449 26.233 -318.95 -78.6931 50.1446 87.1986 -194.922 132.319 -171.78 -4.19736 11.876 -171.779 48.3047 84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237 28.9419 111.421 92.1237 -288.248 -23.3478 -275.22 -292.062 -92.698 5.96847 -93.6244 109.734 time of ldlt decomposition is 0.02ms x = -55.7896 -298.793 130.113 -388.455 -159.312 160.654 -40.0416 -193.561 155.844 181.144 185.125 -62.7786 19.8333 -30.8772 -200.746 55.8385 -206.604 26.3559 -14.6789 122.719 -221.449 26.233 -318.95 -78.6931 50.1446 87.1986 -194.922 132.319 -171.78 -4.19736 11.876 -171.779 48.3047 84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237 28.9419 111.421 92.1237 -288.248 -23.3478 -275.22 -292.062 -92.698 5.96847 -93.6244 109.734
cmake_minimum_required( VERSION 2.8 )
project( geometry )
# 添加Eigen头文件
include_directories( "/usr/include/eigen3" )
add_executable(eigenGeometry eigenGeometry.cpp)
#include <iostream> #include <cmath> using namespace std; #include <Eigen/Core> #include <Eigen/Geometry> using namespace Eigen; // 本程序演示了 Eigen 几何模块的使用方法 // Eigen/Geometry 模块提供了各种旋转和平移的表示 int main(int argc, char **argv) { // 1.旋转矩阵和旋转向量 // 旋转矩阵:Matrix3d 或 Matrix3f Matrix3d rotation_matrix = Matrix3d::Identity(); // 旋转向量:AngleAxis, 它底层不直接是Matrix,但运算可以当作矩阵(因为重载了运算符) AngleAxisd rotation_vector(M_PI / 4, Vector3d(0, 0, 1)); //沿 Z 轴旋转 45 度 + 平移 cout.precision(3); //保留三位小数 cout << "旋转矩阵 =\n" << rotation_matrix << endl; // 1.1 旋转向量->旋转矩阵 // 1)旋转向量.matrix() cout << "旋转向量->旋转矩阵1 =\n" << rotation_vector.matrix() << endl; //用matrix()转换成矩阵 // 2)旋转向量.toRotationMatrix():直接赋值 rotation_matrix = rotation_vector.toRotationMatrix(); cout << "旋转向量->旋转矩阵2 =\n" << rotation_matrix << endl; // 1.2 坐标变换 // 1)利用旋转向量AngleAxis Vector3d v(1, 0, 0); Vector3d v_rotated = rotation_vector * v; cout << "坐标变换(1,0,0) after rotation (by angle axis) = " << v_rotated.transpose() << endl; // 2)利用旋转矩阵 v_rotated = rotation_matrix * v; cout << "坐标变换(1,0,0) after rotation (by matrix) = " << v_rotated.transpose() << endl; // 2 欧拉角: 旋转矩阵->欧拉角 Vector3d euler_angles = rotation_matrix.eulerAngles(2, 1, 0); // ZYX顺序,即yaw-pitch-roll顺序 cout << "欧拉角yaw pitch roll(ZYX) = " << euler_angles.transpose() << endl; // 3 (欧氏)变换矩阵:旋转+平移 Isometry3d T = Isometry3d::Identity(); // 虽然称为3d,实质上是4*4的矩阵 T.rotate(rotation_vector); // 旋转 T.pretranslate(Vector3d(1, 3, 4)); // 平移 cout << "变换矩阵 = \n" << T.matrix() << endl; // 3.1 用变换矩阵进行坐标变换 Vector3d v_transformed = T * v; // 相当于R*v+t cout << "坐标变换v tranformed = " << v_transformed.transpose() << endl; // 对于仿射和射影变换,使用 Eigen::Affine3d 和 Eigen::Projective3d 即可,略 // 4 四元数:旋转向量/旋转矩阵->四元数。反之亦然 // 输出顺序:coeffs的顺序是(x,y,z,w),w为实部,前三者为虚部 Quaterniond q = Quaterniond(rotation_vector); cout << "旋转向量->四元数 = " << q.coeffs().transpose()<< endl; q = Quaterniond(rotation_matrix); cout << "旋转矩阵->四元数 = " << q.coeffs().transpose() << endl; // 4.1 坐标变换 v_rotated = q * v; // 注意数学上是qvq^{-1} cout << "坐标变换(1,0,0) after rotation = " << v_rotated.transpose() << endl; // 用常规向量乘法表示,则应该如下计算 cout << "坐标变换should be equal to " << (q * Quaterniond(0, 1, 0, 0) * q.inverse()).coeffs().transpose() << endl; return 0; }
旋转矩阵 = 1 0 0 0 1 0 0 0 1 旋转向量->旋转矩阵1 = 0.707 -0.707 0 0.707 0.707 0 0 0 1 旋转向量->旋转矩阵2 = 0.707 -0.707 0 0.707 0.707 0 0 0 1 坐标变换(1,0,0) after rotation (by angle axis) = 0.707 0.707 0 坐标变换(1,0,0) after rotation (by matrix) = 0.707 0.707 0 欧拉角yaw pitch roll(ZYX) = 0.785 -0 0 变换矩阵 = 0.707 -0.707 0 1 0.707 0.707 0 3 0 0 1 4 0 0 0 1 坐标变换v tranformed = 1.71 3.71 4 旋转向量->四元数 = 0 0 0.383 0.924 旋转矩阵->四元数 = 0 0 0.383 0.924 坐标变换(1,0,0) after rotation = 0.707 0.707 0 坐标变换should be equal to 0.707 0.707 0 0
cmake_minimum_required( VERSION 2.8 )
project( visualizeGeometry )
set(CMAKE_CXX_FLAGS "-std=c++11")
# 添加Eigen头文件
include_directories( "/usr/include/eigen3" )
# 添加Pangolin依赖
find_package( Pangolin )
include_directories( ${Pangolin_INCLUDE_DIRS} )
add_executable( visualizeGeometry visualizeGeometry.cpp )
target_link_libraries( visualizeGeometry ${Pangolin_LIBRARIES} )
#include <iostream> #include <iomanip> using namespace std; #include <Eigen/Core> #include <Eigen/Geometry> using namespace Eigen; #include <pangolin/pangolin.h> struct RotationMatrix { Matrix3d matrix = Matrix3d::Identity(); }; ostream &operator<<(ostream &out, const RotationMatrix &r) { out.setf(ios::fixed); Matrix3d matrix = r.matrix; out << '='; out << "[" << setprecision(2) << matrix(0, 0) << "," << matrix(0, 1) << "," << matrix(0, 2) << "]," << "[" << matrix(1, 0) << "," << matrix(1, 1) << "," << matrix(1, 2) << "]," << "[" << matrix(2, 0) << "," << matrix(2, 1) << "," << matrix(2, 2) << "]"; return out; } istream &operator>>(istream &in, RotationMatrix &r) { return in; } struct TranslationVector { Vector3d trans = Vector3d(0, 0, 0); }; ostream &operator<<(ostream &out, const TranslationVector &t) { out << "=[" << t.trans(0) << ',' << t.trans(1) << ',' << t.trans(2) << "]"; return out; } istream &operator>>(istream &in, TranslationVector &t) { return in; } struct QuaternionDraw { Quaterniond q; }; ostream &operator<<(ostream &out, const QuaternionDraw quat) { auto c = quat.q.coeffs(); out << "=[" << c[0] << "," << c[1] << "," << c[2] << "," << c[3] << "]"; return out; } istream &operator>>(istream &in, const QuaternionDraw quat) { return in; } int main(int argc, char **argv) { pangolin::CreateWindowAndBind("visualize geometry", 1000, 600); glEnable(GL_DEPTH_TEST); pangolin::OpenGlRenderState s_cam( pangolin::ProjectionMatrix(1000, 600, 420, 420, 500, 300, 0.1, 1000), pangolin::ModelViewLookAt(3, 3, 3, 0, 0, 0, pangolin::AxisY) ); const int UI_WIDTH = 500; pangolin::View &d_cam = pangolin::CreateDisplay(). SetBounds(0.0, 1.0, pangolin::Attach::Pix(UI_WIDTH), 1.0, -1000.0f / 600.0f). SetHandler(new pangolin::Handler3D(s_cam)); // ui pangolin::Var<RotationMatrix> rotation_matrix("ui.R", RotationMatrix()); pangolin::Var<TranslationVector> translation_vector("ui.t", TranslationVector()); pangolin::Var<TranslationVector> euler_angles("ui.rpy", TranslationVector()); pangolin::Var<QuaternionDraw> quaternion("ui.q", QuaternionDraw()); pangolin::CreatePanel("ui").SetBounds(0.0, 1.0, 0.0, pangolin::Attach::Pix(UI_WIDTH)); while (!pangolin::ShouldQuit()) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); d_cam.Activate(s_cam); pangolin::OpenGlMatrix matrix = s_cam.GetModelViewMatrix(); Matrix<double, 4, 4> m = matrix; RotationMatrix R; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) R.matrix(i, j) = m(j, i); rotation_matrix = R; TranslationVector t; t.trans = Vector3d(m(0, 3), m(1, 3), m(2, 3)); t.trans = -R.matrix * t.trans; translation_vector = t; TranslationVector euler; euler.trans = R.matrix.eulerAngles(2, 1, 0); euler_angles = euler; QuaternionDraw quat; quat.q = Quaterniond(R.matrix); quaternion = quat; glColor3f(1.0, 1.0, 1.0); pangolin::glDrawColouredCube(); // draw the original axis glLineWidth(3); glColor3f(0.8f, 0.f, 0.f); glBegin(GL_LINES); glVertex3f(0, 0, 0); glVertex3f(10, 0, 0); glColor3f(0.f, 0.8f, 0.f); glVertex3f(0, 0, 0); glVertex3f(0, 10, 0); glColor3f(0.2f, 0.2f, 1.f); glVertex3f(0, 0, 0); glVertex3f(0, 0, 10); glEnd(); pangolin::FinishFrame(); } }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。