赞
踩
浦语·灵笔是基于书生·浦语大语言模型研发的视觉-语言大模型,提供出色的图文理解和创作能力,结合了视觉和语言的先进技术,能够实现图像到文本、文本到图像的双向转换。使用浦语·灵笔大模型可以轻松的创作一篇图文推文,也能够轻松识别一张图片中的物体,并生成对应的文本描述。
克隆环境
/root/share/install_conda_env_internlm_base.sh xcomposer-demo
激活环境
conda activate xcomposer-demo
安装依赖
pip install transformers==4.33.1 timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops accelerate
模型下载
mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-xcomposer-7b /root/model/Shanghai_AI_Laboratory
代码准备
cd /root/code
git clone https://gitee.com/internlm/InternLM-XComposer.git
cd /root/code/InternLM-XComposer
git checkout 3e8c79051a1356b9c388a6447867355c0634932d
demo运行
cd /root/code/InternLM-XComposer
python examples/web_demo.py \
--folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \
--num_gpus 1 \
--port 6006
运行效果
环境准备.
python -m pip install --upgrade pip
pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
模型下载
mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory
Lagent 安装
cd /root/code
git clone https://gitee.com/internlm/lagent.git
cd /root/code/lagent
git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
pip install -e . # 源码安装
修改代码
由于代码修改的地方比较多,大家直接将 /root/code/lagent/examples/react_web_demo.py 内容替换为以下代码
import copy import os import streamlit as st from streamlit.logger import get_logger from lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter from lagent.agents.react import ReAct from lagent.llms import GPTAPI from lagent.llms.huggingface import HFTransformerCasualLM class SessionState: def init_state(self): """Initialize session state variables.""" st.session_state['assistant'] = [] st.session_state['user'] = [] #action_list = [PythonInterpreter(), GoogleSearch()] action_list = [PythonInterpreter()] st.session_state['plugin_map'] = { action.name: action for action in action_list } st.session_state['model_map'] = {} st.session_state['model_selected'] = None st.session_state['plugin_actions'] = set() def clear_state(self): """Clear the existing session state.""" st.session_state['assistant'] = [] st.session_state['user'] = [] st.session_state['model_selected'] = None if 'chatbot' in st.session_state: st.session_state['chatbot']._session_history = [] class StreamlitUI: def __init__(self, session_state: SessionState): self.init_streamlit() self.session_state = session_state def init_streamlit(self): """Initialize Streamlit's UI settings.""" st.set_page_config( layout='wide', page_title='lagent-web', page_icon='./docs/imgs/lagent_icon.png') # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow') st.sidebar.title('模型控制') def setup_sidebar(self): """Setup the sidebar for model and plugin selection.""" model_name = st.sidebar.selectbox( '模型选择:', options=['gpt-3.5-turbo','internlm']) if model_name != st.session_state['model_selected']: model = self.init_model(model_name) self.session_state.clear_state() st.session_state['model_selected'] = model_name if 'chatbot' in st.session_state: del st.session_state['chatbot'] else: model = st.session_state['model_map'][model_name] plugin_name = st.sidebar.multiselect( '插件选择', options=list(st.session_state['plugin_map'].keys()), default=[list(st.session_state['plugin_map'].keys())[0]], ) plugin_action = [ st.session_state['plugin_map'][name] for name in plugin_name ] if 'chatbot' in st.session_state: st.session_state['chatbot']._action_executor = ActionExecutor( actions=plugin_action) if st.sidebar.button('清空对话', key='clear'): self.session_state.clear_state() uploaded_file = st.sidebar.file_uploader( '上传文件', type=['png', 'jpg', 'jpeg', 'mp4', 'mp3', 'wav']) return model_name, model, plugin_action, uploaded_file def init_model(self, option): """Initialize the model based on the selected option.""" if option not in st.session_state['model_map']: if option.startswith('gpt'): st.session_state['model_map'][option] = GPTAPI( model_type=option) else: st.session_state['model_map'][option] = HFTransformerCasualLM( '/root/model/Shanghai_AI_Laboratory/internlm-chat-7b') return st.session_state['model_map'][option] def initialize_chatbot(self, model, plugin_action): """Initialize the chatbot with the given model and plugin actions.""" return ReAct( llm=model, action_executor=ActionExecutor(actions=plugin_action)) def render_user(self, prompt: str): with st.chat_message('user'): st.markdown(prompt) def render_assistant(self, agent_return): with st.chat_message('assistant'): for action in agent_return.actions: if (action): self.render_action(action) st.markdown(agent_return.response) def render_action(self, action): with st.expander(action.type, expanded=True): st.markdown( "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>插 件</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>" # noqa E501 + action.type + '</span></p>', unsafe_allow_html=True) st.markdown( "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>思考步骤</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>" # noqa E501 + action.thought + '</span></p>', unsafe_allow_html=True) if (isinstance(action.args, dict) and 'text' in action.args): st.markdown( "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行内容</span><span style='width:14px;text-align:left;display:block;'>:</span></p>", # noqa E501 unsafe_allow_html=True) st.markdown(action.args['text']) self.render_action_results(action) def render_action_results(self, action): """Render the results of action, including text, images, videos, and audios.""" if (isinstance(action.result, dict)): st.markdown( "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行结果</span><span style='width:14px;text-align:left;display:block;'>:</span></p>", # noqa E501 unsafe_allow_html=True) if 'text' in action.result: st.markdown( "<p style='text-align: left;'>" + action.result['text'] + '</p>', unsafe_allow_html=True) if 'image' in action.result: image_path = action.result['image'] image_data = open(image_path, 'rb').read() st.image(image_data, caption='Generated Image') if 'video' in action.result: video_data = action.result['video'] video_data = open(video_data, 'rb').read() st.video(video_data) if 'audio' in action.result: audio_data = action.result['audio'] audio_data = open(audio_data, 'rb').read() st.audio(audio_data) def main(): logger = get_logger(__name__) # Initialize Streamlit UI and setup sidebar if 'ui' not in st.session_state: session_state = SessionState() session_state.init_state() st.session_state['ui'] = StreamlitUI(session_state) else: st.set_page_config( layout='wide', page_title='lagent-web', page_icon='./docs/imgs/lagent_icon.png') # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow') model_name, model, plugin_action, uploaded_file = st.session_state[ 'ui'].setup_sidebar() # Initialize chatbot if it is not already initialized # or if the model has changed if 'chatbot' not in st.session_state or model != st.session_state[ 'chatbot']._llm: st.session_state['chatbot'] = st.session_state[ 'ui'].initialize_chatbot(model, plugin_action) for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']): st.session_state['ui'].render_user(prompt) st.session_state['ui'].render_assistant(agent_return) # User input form at the bottom (this part will be at the bottom) # with st.form(key='my_form', clear_on_submit=True): if user_input := st.chat_input(''): st.session_state['ui'].render_user(user_input) st.session_state['user'].append(user_input) # Add file uploader to sidebar if uploaded_file: file_bytes = uploaded_file.read() file_type = uploaded_file.type if 'image' in file_type: st.image(file_bytes, caption='Uploaded Image') elif 'video' in file_type: st.video(file_bytes, caption='Uploaded Video') elif 'audio' in file_type: st.audio(file_bytes, caption='Uploaded Audio') # Save the file to a temporary location and get the path file_path = os.path.join(root_dir, uploaded_file.name) with open(file_path, 'wb') as tmpfile: tmpfile.write(file_bytes) st.write(f'File saved at: {file_path}') user_input = '我上传了一个图像,路径为: {file_path}. {user_input}'.format( file_path=file_path, user_input=user_input) agent_return = st.session_state['chatbot'].chat(user_input) st.session_state['assistant'].append(copy.deepcopy(agent_return)) logger.info(agent_return.inner_steps) st.session_state['ui'].render_assistant(agent_return) if __name__ == '__main__': root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) root_dir = os.path.join(root_dir, 'tmp_dir') os.makedirs(root_dir, exist_ok=True) main()
Demo运行
streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006
运行效果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。