当前位置:   article > 正文

Pytorch入门实战(7):基于BERT实现文本隐喻二分类(Kaggle入门题目)_文本二分类模型

文本二分类模型

Open In Google Colab

本文涉及知识点

  1. Hugging Face快速入门
  2. Pytorch中DataLoader和Dataset的基本用法

本文内容

这是Kaggle上NLP的一个入门题目(链接),任务是对文本进行二分类。内容描述:人们会在Twitter上发布一些内容,这些内容有些是灾难事件,例如“白宫着火了,火焰很大”,这就是一个灾难事件。而有一些虽然也带了相关词汇,却不是灾难事件,例如:”天上那朵云好像燃烧的火焰。“。所以本项目的任务就是区分这两种情况。

数据集可以到Kaggle上下载(链接),或者使用百度网盘下载(链接

最终可以将你的预测结果上传到Kaggle上查看分数(链接)。

你可以在Github上找到本文的源码(链接)。你也可以直接使用Google Colab来运行代码(Open In Google Colab

环境配置

本项目使用库版本如下

python==3.8.5
pandas==1.3.5
torch==1.11.0
transformers==4.21
  • 1
  • 2
  • 3
  • 4

导入本文要使用的所有依赖包:

import os
import pandas
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
# 用于加载bert模型的分词器
from transformers import AutoTokenizer
# 用于加载bert模型
from transformers import AutoModel
from pathlib import Path
from tqdm.notebook import tqdm
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

全局配置

batch_size = 16
# 文本的最大长度
text_max_length = 128
# 总训练的epochs数,我只是随便定义了个数
epochs = 100
# 取多少训练集的数据作为验证集
validation_ratio = 0.1
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 每多少步,打印一次loss
log_per_step = 50

# 数据集所在位置
dataset_dir = Path("./dataset")
os.makedirs(dataset_dir) if not os.path.exists(dataset_dir) else ''

# 模型存储路径
model_dir = Path("./drive/MyDrive/model/bert_checkpoints")
# 如果模型目录不存在,则创建一个
os.makedirs(model_dir) if not os.path.exists(model_dir) else ''

print("Device:", device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
Device: cuda
  • 1

数据处理

加载数据集

请先下载数据集,并解压到dataset目录下,其中会有train.csv、test.csv和sample_submission.csv三个文件。

使用pandas来加载训练数据,对于训练数据,我们只需要text和target两行:

pd_data = pandas.read_csv(dataset_dir / 'train.csv')[['text', 'target']]
  • 1

加载成功后,来看一下内容:

pd_data
  • 1
texttarget
0Our Deeds are the Reason of this #earthquake M...1
1Forest fire near La Ronge Sask. Canada1
2All residents asked to 'shelter in place' are ...1
313,000 people receive #wildfires evacuation or...1
4Just got sent this photo from Ruby #Alaska as ...1
.........
7608Two giant cranes holding a bridge collapse int...1
7609@aria_ahrary @TheTawniest The out of control w...1
7610M1.94 [01:04 UTC]?5km S of Volcano Hawaii. htt...1
7611Police investigating after an e-bike collided ...1
7612The Latest: More Homes Razed by Northern Calif...1

text就是推文,target就是该推文是否是在描述一个灾难事件,1:是,0:否。

Dataset and Dataloader

我们将训练数据按比例随机分为训练集和验证集:

pd_validation_data = pd_data.sample(frac=validation_ratio)
pd_train_data = pd_data[~pd_data.index.isin(pd_validation_data.index)]
  • 1
  • 2

加载好数据集后,我们就可以开始构建Dataset了,我们这里Dataset就是返回推文和其target:

class MyDataset(Dataset):

    def __init__(self, mode='train'):
        super(MyDataset, self).__init__()
        self.mode = mode
        # 拿到对应的数据
        if mode == 'train':
            self.dataset = pd_train_data
        elif mode == 'validation':
            self.dataset = pd_validation_data
        elif mode == 'test':
            # 如果是测试模式,则返回推文和id。拿id做target主要是方便后面写入结果。
            self.dataset = pandas.read_csv(dataset_dir / 'test.csv')[['text', 'id']]
        else:
            raise Exception("Unknown mode {}".format(mode))

    def __getitem__(self, index):
        # 取第index条
        data = self.dataset.iloc[index]
        # 取其推文,做个简单的数据清理
        source = data['text'].replace("#", "").replace("@", "")
        # 取对应的推文
        if self.mode == 'test':
            # 如果是test,将id做为target
            target = data['id']
        else:
            target = data['target']
        # 返回推文和target
        return source, target

    def __len__(self):
        return len(self.dataset)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
train_dataset = MyDataset('train')
validation_dataset = MyDataset('validation')
  • 1
  • 2

我们来打印看一下;

train_dataset.__getitem__(0)
  • 1
('Our Deeds are the Reason of this earthquake May ALLAH Forgive us all', 1)
  • 1

构造好Dataset后,就可以来构造Dataloader了。在构造Dataloader前,我们需要先定义好分词器:

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
  • 1

我们来尝试使用一下分词器:

tokenizer("I'm learning deep learning", return_tensors='pt')
  • 1
{'input_ids': tensor([[ 101, 1045, 1005, 1049, 4083, 2784, 4083,  102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1]])}
  • 1

可以正常运行。其中101表示“开始”([CLS]),102表示句子结束([SEP])。

我们接着构造我们的Dataloader。我们需要定义一下collate_fn,在其中完成对句子进行编码、填充、组装batch等动作:

def collate_fn(batch):
    """
    将一个batch的文本句子转成tensor,并组成batch。
    :param batch: 一个batch的句子,例如: [('推文', target), ('推文', target), ...]
    :return: 处理后的结果,例如:
             src: {'input_ids': tensor([[ 101, ..., 102, 0, 0, ...], ...]), 'attention_mask': tensor([[1, ..., 1, 0, ...], ...])}
             target:[1, 1, 0, ...]
    """
    text, target = zip(*batch)
    text, target = list(text), list(target)

    # src是要送给bert的,所以不需要特殊处理,直接用tokenizer的结果即可
    # padding='max_length' 不够长度的进行填充
    # truncation=True 长度过长的进行裁剪
    src = tokenizer(text, padding='max_length', max_length=text_max_length, return_tensors='pt', truncation=True)

    return src, torch.LongTensor(target)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
validation_loader = DataLoader(validation_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)
  • 1
  • 2

我们来看一眼train_loader的数据:

inputs, targets = next(iter(train_loader))
print("inputs:", inputs)
print("targets:", targets)
  • 1
  • 2
  • 3
inputs: {'input_ids': tensor([[  101,  4911,  1024,  ...,     0,     0,     0],
        [  101, 19387, 11113,  ...,     0,     0,     0],
        [  101,  2317,  2111,  ...,     0,     0,     0],
        ...,
        [  101, 25595, 10288,  ...,     0,     0,     0],
        [  101,  1037, 14700,  ...,     0,     0,     0],
        [  101, 12361,  2042,  ...,     0,     0,     0]]), 'token_type_ids': tensor([[0, 0, 0,  ..., 0, 0, 0],
        [0, 0, 0,  ..., 0, 0, 0],
        [0, 0, 0,  ..., 0, 0, 0],
        ...,
        [0, 0, 0,  ..., 0, 0, 0],
        [0, 0, 0,  ..., 0, 0, 0],
        [0, 0, 0,  ..., 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1,  ..., 0, 0, 0],
        [1, 1, 1,  ..., 0, 0, 0],
        [1, 1, 1,  ..., 0, 0, 0],
        ...,
        [1, 1, 1,  ..., 0, 0, 0],
        [1, 1, 1,  ..., 0, 0, 0],
        [1, 1, 1,  ..., 0, 0, 0]])}
targets: tensor([1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

构建模型

class MyModel(nn.Module):

    def __init__(self):
        super(MyModel, self).__init__()

        # 加载bert模型
        self.bert = AutoModel.from_pretrained("bert-base-uncased")

        # 最后的预测层
        self.predictor = nn.Sequential(
            nn.Linear(768, 256),
            nn.ReLU(),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, src):
        """
        :param src: 分词后的推文数据
        """

        # 将src直接序列解包传入bert,因为bert和tokenizer是一套的,所以可以这么做。
        # 得到encoder的输出,用最前面[CLS]的输出作为最终线性层的输入
        outputs = self.bert(**src).last_hidden_state[:, 0, :]

        # 使用线性层来做最终的预测
        return self.predictor(outputs)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
model = MyModel()
model = model.to(device)
  • 1
  • 2
model(inputs.to(device))
  • 1
tensor([[0.5121],
        [0.5032],
        [0.5032],
        [0.4913],
        [0.4941],
        [0.4924],
        [0.5204],
        [0.4764],
        [0.5025],
        [0.5145],
        [0.4916],
        [0.4909],
        [0.4891],
        [0.5333],
        [0.4967],
        [0.4951]], device='cuda:0', grad_fn=<SigmoidBackward0>)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

训练模型

接下来开始正式训练模型,首先定义出损失函数和优化器。因为是二分类问题,用Binary Cross Entropy就行:

criteria = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=3e-5)
  • 1
  • 2

这个学习率是我测试出来的,之前用的3e-4,发现怎么都不收敛。看来学习率确实很重要。

# 由于inputs是字典类型的,定义一个辅助函数帮助to(device)
def to_device(dict_tensors):
    result_tensors = {}
    for key, value in dict_tensors.items():
        result_tensors[key] = value.to(device)
    return result_tensors
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

定义一个验证方法,获取到验证集的精准率和loss。

def validate():
    model.eval()
    total_loss = 0.
    total_correct = 0
    for inputs, targets in validation_loader:
        inputs, targets = to_device(inputs), targets.to(device)
        outputs = model(inputs)
        loss = criteria(outputs.view(-1), targets.float())
        total_loss += float(loss)

        correct_num = (((outputs >= 0.5).float() * 1).flatten() == targets).sum()
        total_correct += correct_num

    return total_correct / len(validation_dataset), total_loss / len(validation_dataset)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

开始训练:

# 首先将模型调成训练模式
model.train()

# 清空一下cuda缓存
if torch.cuda.is_available():
    torch.cuda.empty_cache()

# 定义几个变量,帮助打印loss
total_loss = 0.
# 记录步数
step = 0

# 记录在验证集上最好的准确率
best_accuracy = 0

# 开始训练
for epoch in range(epochs):
    model.train()
    for i, (inputs, targets) in enumerate(train_loader):
        # 从batch中拿到训练数据
        inputs, targets = to_device(inputs), targets.to(device)
        # 传入模型进行前向传递
        outputs = model(inputs)
        # 计算损失
        loss = criteria(outputs.view(-1), targets.float())
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        total_loss += float(loss)
        step += 1

        if step % log_per_step == 0:
            print("Epoch {}/{}, Step: {}/{}, total loss:{:.4f}".format(epoch+1, epochs, i, len(train_loader), total_loss))
            total_loss = 0

        del inputs, targets

    # 一个epoch后,使用过验证集进行验证
    accuracy, validation_loss = validate()
    print("Epoch {}, accuracy: {:.4f}, validation loss: {:.4f}".format(epoch+1, accuracy, validation_loss))
    torch.save(model, model_dir / f"model_{epoch}.pt")

    # 保存最好的模型
    if accuracy > best_accuracy:
        torch.save(model, model_dir / f"model_best.pt")
        best_accuracy = accuracy
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
Epoch 1/100, Step: 49/429, total loss:28.4544
Epoch 1/100, Step: 99/429, total loss:22.8545
Epoch 1/100, Step: 149/429, total loss:21.7493
。。。略
Epoch 10/100, Step: 288/429, total loss:3.1754
Epoch 10/100, Step: 338/429, total loss:3.3069
Epoch 10/100, Step: 388/429, total loss:1.8836
Epoch 10, accuracy: 0.8292, validation loss: 0.0561
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

模型使用

加载最好的模型,然后按照Kaggle的要求组装csv文件。

model = torch.load(model_dir / f"model_best.pt")
model = model.eval()
  • 1
  • 2

构造测试集的dataloader。测试集是不包含target的。

test_dataset = MyDataset('test')
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)
  • 1
  • 2

将测试数据送入模型,得到结果,最后组装成Kaggle要求数据结构:

results = []
for inputs, ids in tqdm(test_loader):
    outputs = model(inputs.to(device))
    outputs = (outputs >= 0.5).int().flatten().tolist()
    ids = ids.tolist()
    results = results + [(id, result) for result, id in zip(outputs, ids)]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
with open(dataset_dir / 'results.csv', 'w', encoding='utf-8') as f:
    f.write('id,target\n')
    for id, result in results:
        f.write(f"{id},{result}\n")
print("Finished!")
  • 1
  • 2
  • 3
  • 4
  • 5
Finished!
  • 1

拿着结果去Kaggle上试一下吧,看看你能得多少分。我这边跑了10个Epoch,最终得到了0.83573的分数,还行。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/235507
推荐阅读
相关标签
  

闽ICP备14008679号